Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.203
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Nat Immunol ; 22(2): 140-153, 2021 02.
Article in English | MEDLINE | ID: mdl-33349708

ABSTRACT

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Subject(s)
Antigen Presentation , Cross-Priming , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Phagosomes/metabolism , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , T-Lymphocytes/metabolism , Animals , Cell Death , Coculture Techniques , Dendritic Cells/immunology , HEK293 Cells , Histocompatibility Antigens Class I/metabolism , Humans , Lectins, C-Type/genetics , Ligands , Mice , NADPH Oxidases/metabolism , Phagosomes/genetics , Phagosomes/immunology , Phosphorylation , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Receptors, Immunologic/genetics , Receptors, Mitogen/genetics , Signal Transduction , Syk Kinase/metabolism , T-Lymphocytes/immunology
3.
Nature ; 592(7853): 296-301, 2021 04.
Article in English | MEDLINE | ID: mdl-33731931

ABSTRACT

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Subject(s)
Atherosclerosis/pathology , Clonal Hematopoiesis , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Animals , Antibodies/immunology , Antibodies/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Bone Marrow/metabolism , Caspase 1/metabolism , Caspases, Initiator/metabolism , Disease Models, Animal , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins/metabolism , Pyroptosis , RNA-Seq , Single-Cell Analysis
4.
EMBO J ; 41(21): e110393, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36215696

ABSTRACT

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Subject(s)
Lamin Type A , Sirtuins , Aged, 80 and over , Humans , Centenarians , Alleles , Genomic Instability
5.
Am J Hum Genet ; 110(2): 336-348, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36649706

ABSTRACT

Genome-wide association studies (GWASs) have been performed to identify host genetic factors for a range of phenotypes, including for infectious diseases. The use of population-based common control subjects from biobanks and extensive consortia is a valuable resource to increase sample sizes in the identification of associated loci with minimal additional expense. Non-differential misclassification of the outcome has been reported when the control subjects are not well characterized, which often attenuates the true effect size. However, for infectious diseases the comparison of affected subjects to population-based common control subjects regardless of pathogen exposure can also result in selection bias. Through simulated comparisons of pathogen-exposed cases and population-based common control subjects, we demonstrate that not accounting for pathogen exposure can result in biased effect estimates and spurious genome-wide significant signals. Further, the observed association can be distorted depending upon strength of the association between a locus and pathogen exposure and the prevalence of pathogen exposure. We also used a real data example from the hepatitis C virus (HCV) genetic consortium comparing HCV spontaneous clearance to persistent infection with both well-characterized control subjects and population-based common control subjects from the UK Biobank. We find biased effect estimates for known HCV clearance-associated loci and potentially spurious HCV clearance associations. These findings suggest that the choice of control subjects is especially important for infectious diseases or outcomes that are conditional upon environmental exposures.


Subject(s)
Communicable Diseases , Hepatitis C , Humans , Genome-Wide Association Study , Communicable Diseases/genetics , Phenotype , Hepatitis C/genetics , Hepacivirus
6.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868206

ABSTRACT

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Subject(s)
Genomics , Health Policy , Humans , Australia , Rare Diseases , Delivery of Health Care
7.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38321934

ABSTRACT

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Myogenin , RNA, Messenger , Tankyrases , Tankyrases/metabolism , Tankyrases/genetics , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Muscle Development/genetics , Animals , Muscle Fibers, Skeletal/metabolism , Mice , Myogenin/genetics , Myogenin/metabolism , Nucleophosmin , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , RNA Stability/genetics , Poly ADP Ribosylation/genetics , Cell Line , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cell Differentiation/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , HEK293 Cells
8.
Proc Natl Acad Sci U S A ; 120(36): e2308752120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639588

ABSTRACT

The causative agent of human Q fever, Coxiella burnetii, is highly adapted to infect alveolar macrophages by inhibiting a range of host responses to infection. Despite the clinical and biological importance of this pathogen, the challenges related to genetic manipulation of both C. burnetii and macrophages have limited our knowledge of the mechanisms by which C. burnetii subverts macrophages functions. Here, we used the related bacterium Legionella pneumophila to perform a comprehensive screen of C. burnetii effectors that interfere with innate immune responses and host death using the greater wax moth Galleria mellonella and mouse bone marrow-derived macrophages. We identified MceF (Mitochondrial Coxiella effector protein F), a C. burnetii effector protein that localizes to mitochondria and contributes to host cell survival. MceF was shown to enhance mitochondrial function, delay membrane damage, and decrease mitochondrial ROS production induced by rotenone. Mechanistically, MceF recruits the host antioxidant protein Glutathione Peroxidase 4 (GPX4) to the mitochondria. The protective functions of MceF were absent in primary macrophages lacking GPX4, while overexpression of MceF in human cells protected against oxidative stress-induced cell death. C. burnetii lacking MceF was replication competent in mammalian cells but induced higher mortality in G. mellonella, indicating that MceF modulates the host response to infection. This study reveals an important C. burnetii strategy to subvert macrophage cell death and host immunity and demonstrates that modulation of the host antioxidant system is a viable strategy to promote the success of intracellular bacteria.


Subject(s)
Antioxidants , Coxiella , Humans , Animals , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase , Oxidative Stress , Cell Death , Mammals
9.
Am J Hum Genet ; 109(2): 299-310, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35090584

ABSTRACT

Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQß1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQß1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQß1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQß1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQß1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.


Subject(s)
HLA-DQ beta-Chains/genetics , Hepacivirus/pathogenicity , Hepatitis C/genetics , Host-Pathogen Interactions/genetics , Polymorphism, Single Nucleotide , Acute Disease , Alleles , Amino Acid Substitution , Black People , Female , Gene Expression , Genome-Wide Association Study , Genotype , HLA-DQ beta-Chains/immunology , Hepacivirus/growth & development , Hepacivirus/immunology , Hepatitis C/ethnology , Hepatitis C/immunology , Hepatitis C/virology , Host-Pathogen Interactions/immunology , Humans , Leucine/immunology , Leucine/metabolism , Male , Proline/immunology , Proline/metabolism , Protein Isoforms/genetics , Protein Isoforms/immunology , Remission, Spontaneous , White People
10.
PLoS Pathog ; 19(7): e1011491, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37399210

ABSTRACT

Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Humans , Peptidylprolyl Isomerase/metabolism , Bacterial Proteins/metabolism , Hydrogen Peroxide/metabolism , Bacteria/metabolism , Macrophages/metabolism
11.
FASEB J ; 38(5): e23439, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38416461

ABSTRACT

Reactive oxygen species (ROS) are among the most severe types of cellular stressors with the ability to damage essential cellular biomolecules. Excess levels of ROS are correlated with multiple pathophysiological conditions including neurodegeneration, diabetes, atherosclerosis, and cancer. Failure to regulate the severely imbalanced levels of ROS can ultimately lead to cell death, highlighting the importance of investigating the molecular mechanisms involved in the detoxification procedures that counteract the effects of these compounds in living organisms. One of the most abundant forms of ROS is H2 O2 , mainly produced by the electron transport chain in the mitochondria. Numerous genes have been identified as essential to the process of cellular detoxification. Yeast YAP1, which is homologous to mammalian AP-1 type transcriptional factors, has a key role in oxidative detoxification by upregulating the expression of antioxidant genes in yeast. The current study reveals novel functions for COX5A and NPR3 in H2 O2 -induced stress by demonstrating that their deletions result in a sensitive phenotype. Our follow-up investigations indicate that COX5A and NPR3 regulate the expression of YAP1 through an alternative mode of translation initiation. These novel gene functions expand our understanding of the regulation of gene expression and defense mechanism of yeast against oxidative stress.


Subject(s)
Atherosclerosis , Saccharomyces cerevisiae Proteins , Animals , Saccharomyces cerevisiae/genetics , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species , Antioxidants , Mammals , Transcription Factors/genetics , Saccharomyces cerevisiae Proteins/genetics
12.
PLoS Genet ; 18(10): e1010446, 2022 10.
Article in English | MEDLINE | ID: mdl-36215320

ABSTRACT

Diverse physiology relies on receptor and transporter protein down-regulation and degradation mediated by ESCRTs. Loss-of-function mutations in human ESCRT genes linked to cancers and neurological disorders are thought to block this process. However, when homologous mutations are introduced into model organisms, cells thrive and degradation persists, suggesting other mechanisms compensate. To better understand this secondary process, we studied degradation of transporter (Mup1) or receptor (Ste3) proteins when ESCRT genes (VPS27, VPS36) are deleted in Saccharomyces cerevisiae using live-cell imaging and organelle biochemistry. We find that endocytosis remains intact, but internalized proteins aberrantly accumulate on vacuolar lysosome membranes within cells. Here they are sorted for degradation by the intralumenal fragment (ILF) pathway, constitutively or when triggered by substrates, misfolding or TOR activation in vivo and in vitro. Thus, the ILF pathway functions as fail-safe layer of defense when ESCRTs disregard their clients, representing a two-tiered system that ensures degradation of surface polytopic proteins.


Subject(s)
Saccharomyces cerevisiae Proteins , Humans , Proteolysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Vacuoles/genetics , Vacuoles/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Carrier Proteins/metabolism
13.
J Infect Dis ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779916

ABSTRACT

After recovery from a hepatitis B virus (HBV) infection, reactivation can occur with immunosuppression; thus, it is assumed that replication competent HBV persists in the liver. We sought to detect persistent HBV from 13 people with spontaneous recovery. We quantified HBV DNA and RNA in core liver biopsies (median 1.72x106 cells) from people who inject drugs (PWID). Among 13 biopsies, 8 (61%) had evidence of HBV DNA or RNA and 5 (38%) had both HBV DNA and RNA. mRNAs derived from cccDNA and integrated HBV DNA. Here, we show prevalent HBV DNA and RNA despite clinical recovery in PWID.


We used a sensitive method to determine the amount of hepatitis B virus DNA or RNA in the livers of 13 individuals who recovered from hepatitis B virus infection. We found viral DNA or RNA in the liver in 61% of individuals despite no detectable virus in blood. Our findings support that eliminating all hepatitis B from the liver is a difficult treatment goal.

14.
J Infect Dis ; 229(3): 775-779, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37793170

ABSTRACT

Access to direct acting antivirals (DAAs) may be associated with reductions in hepatitis C virus (HCV) viremia prevalence among people with human immunodeficiency virus (PWH). Among 3755 PWH, estimated HCV viremia prevalence decreased by 94.0% from 36% (95% confidence interval [CI], 27%-46%) in 2009 (pre-DAA era) to 2% (95% CI, 0%-4%) in 2021 (DAA era). Male sex, black race, and older age were associated with HCV viremia in 2009 but not in 2021. Injection drug use remained associated with HCV viremia in 2009 and 2021. Targeted interventions are needed to meet the HCV care needs of PWH who use drugs.


Subject(s)
HIV Infections , Hepatitis C, Chronic , Hepatitis C , Humans , Male , HIV , Antiviral Agents/therapeutic use , Viremia/drug therapy , Viremia/epidemiology , Hepatitis C, Chronic/drug therapy , Hepatitis C/complications , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Hepacivirus , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology
15.
J Infect Dis ; 229(1): 54-58, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37380166

ABSTRACT

Orthopoxvirus-specific T-cell responses were analyzed in 10 patients who had recovered from Mpox including 7 people with human immunodeficiency virus (PWH). Eight participants had detectable virus-specific T-cell responses, including a PWH who was not on antiretroviral therapy and a PWH on immunosuppressive therapy. These 2 participants had robust polyfunctional CD4+ T-cell responses to peptides from the 121L vaccinia virus (VACV) protein. T-cells from 4 of 5 HLA-A2-positive participants targeted at least 1 previously described HLA-A2-restricted VACV epitope, including an epitope targeted in 2 participants. These results advance our understanding of immunity in convalescent Mpox patients.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Humans , HLA-A2 Antigen , Vaccinia virus , Epitopes , Viral Proteins
16.
J Biol Chem ; 299(12): 105369, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865311

ABSTRACT

Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.


Subject(s)
Carrier Proteins , Drug Discovery , Heart Failure , Myofibrils , Small Molecule Libraries , Humans , Actins/metabolism , Drug Discovery/methods , Heart Failure/drug therapy , Heart Failure/metabolism , Myocardium/metabolism , Myosins/metabolism , Phosphorylation/drug effects , Protein Binding/drug effects , Small Molecule Libraries/pharmacology , Drug Evaluation, Preclinical , Myofibrils/drug effects , Carrier Proteins/metabolism , Biosensing Techniques , Adenosine Triphosphatases/metabolism , Muscle, Skeletal/metabolism , Recombinant Proteins/metabolism , Enzyme Activation/drug effects , Fluorescence Resonance Energy Transfer
17.
J Biol Chem ; 299(3): 102956, 2023 03.
Article in English | MEDLINE | ID: mdl-36731793

ABSTRACT

ß-III-Spectrin is a key cytoskeletal protein that localizes to the soma and dendrites of cerebellar Purkinje cells and is required for dendritic arborization and signaling. A spinocerebellar ataxia type 5 L253P mutation in the cytoskeletal protein ß-III-spectrin causes high-affinity actin binding. Previously we reported a cell-based fluorescence assay for identification of small-molecule actin-binding modulators of the L253P mutant ß-III-spectrin. Here we describe a complementary, in vitro, fluorescence resonance energy transfer (FRET) assay that uses purified L253P ß-III-spectrin actin-binding domain (ABD) and F-actin. To validate the assay for high-throughput compatibility, we first confirmed that our 50% FRET signal was responsive to swinholide A, an actin-severing compound, and that this yielded excellent assay quality with a Z' value > 0.77. Second, we screened a 2684-compound library of US Food and Drug Administration-approved drugs. Importantly, the screening identified numerous compounds that decreased FRET between fluorescently labeled L253P ABD and F-actin. The activity and target of multiple Hit compounds were confirmed in orthologous cosedimentation actin-binding assays. Through future medicinal chemistry, the Hit compounds can potentially be developed into a spinocerebellar ataxia type 5-specific therapeutic. Furthermore, our validated FRET-based in vitro high-throughput screening platform is poised for screening large compound libraries for ß-III-spectrin ABD modulators.


Subject(s)
Actins , Spectrin , Spinocerebellar Ataxias , Humans , Actins/genetics , Actins/metabolism , Drug Discovery , Neurons/metabolism , Spectrin/metabolism , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism
18.
J Am Chem Soc ; 146(5): 2944-2949, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38227776

ABSTRACT

Methods to incorporate stable radioisotopes are integral to pharmaceutical and agrochemical development. However, despite the prevalence of pyridines in candidate compounds, methods to incorporate 15N atoms within their structures are limited. Here, we present a general approach to pyridine 15N-labeling that proceeds via ring-opening to NTf-Zincke imines and then ring-closure with commercially available 15NH4Cl salts. This process functions on a range of substituted pyridines, from simple building block-type compounds to late-stage labeling of complex pharmaceuticals, and 15N-incorporation is >95% in most cases. The reactivity of the Zincke imine intermediates also enables deuteration of the pyridine C3- and C5-positions, resulting in higher mass isotopologs required for LCMS analysis of biological fluids during drug development.

19.
Oncologist ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713191

ABSTRACT

Tumor mutation profiling (MP) is often conducted on tissue from biopsies conducted for clinical purposes (diagnostic tissue). We aimed to explore the views of patients with cancer on who should own tumor biopsy tissue, pay for its storage, and decide on its future use; and determine their attitudes to and predictors of undergoing additional biopsies if required for research purposes. In this mixed methods, cross-sectional study, patients with advanced solid cancers enrolled in the Molecular Screening and Therapeutics Program (n = 397) completed a questionnaire prior to undergoing MP (n = 356/397). A subset (n = 23) also completed a qualitative interview. Fifty percent of participants believed they and/or relatives should own and control access to diagnostic tissue. Most (65.5%) believed the government should pay for tissue preparation. Qualitative themes included (1) custodianship of diagnostic tissue, (2) changing value of tissue across time and between cultures, (3) equity regarding payment, and (4) cost-benefit considerations in deciding on additional biopsies. Policy and regulation should consider patient perspectives. Extension of publicly funded health care to include tissue retrieval for clinical trials should be considered.

20.
Clin Gastroenterol Hepatol ; 22(6): 1295-1306.e7, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38278200

ABSTRACT

BACKGROUND & AIMS: Coconut water (CW) is anti-inflammatory, can manipulate the gut microbiome, and is a rich source of potassium. Gut microbiome modulation improves outcomes in ulcerative colitis (UC), and potassium possesses in vitro anti-inflammatory property. We evaluated the effect of CW as an adjunct therapy for patients with mild-moderate UC. METHODS: This single-center, double-blind, placebo-controlled trial randomized patients with mild to moderate (Simple Clinical Colitis Activity Index [SCCAI]: 3-9) endoscopically active UC (Ulcerative Colitis Endoscopic Index of Severity [UCEIS] >1) in 1:1 ratio to CW + standard medical therapy (SMT) vs placebo + SMT. Four hundred mL of CW was administered for 8 weeks. Primary outcome measure was clinical remission (SCCAI ≤2), and secondary outcome measures were clinical response (SCCAI decline ≥3) and adverse events at 8 weeks. Microbiome was analyzed at baseline and 8 weeks. RESULTS: Of 121 patients screened, 95 were included for modified intention to treat analysis (CW, n = 49; placebo, n = 46) (mean age, 37.2 ± 11.2 years; males, 54.1%; disease duration, 48 months [interquartile range (IQR), 24-90 months]; pancolitis, 26.1%; SCCAI, 5 [IQR, 4-6]; UCEIS, 4 [IQR, 3-5]). Clinical response (57.1% vs 28.3%; odds ratio [OR], 3.4; 95% confidence interval [CI], 1.4-7.9; P = .01), remission (53.1% vs 28.3%; OR, 2.9; 95% CI, 1.2-6.7; P = .02), and proportion of patients with fecal calprotectin (FCP) <150 µg/g (30.6% vs 6.5%; OR, 6.3; 95% CI, 1.7-23.6; P = .003) were significantly higher in CW. The relative abundance of bacterial taxa that had a significant or trend towards negative correlation with SCCAI, UCEIS, or FCP increased at 8 weeks in CW, and this effect was independent of disease activity and dietary fiber. Adverse events were comparable, and no patient developed hyperkalemia. CONCLUSIONS: CW was more effective than placebo for induction of clinical remission in patients with mild to moderate UC. The trial was prospectively registered on Clinical Trials Registry of India (ctri.nic.in, Number: CTRI/2019/03/01827).


Subject(s)
Cocos , Colitis, Ulcerative , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/therapy , Male , Female , Double-Blind Method , Adult , Middle Aged , Treatment Outcome , Placebos/administration & dosage , Young Adult , Gastrointestinal Microbiome , Aged , Remission Induction , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/administration & dosage , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL