Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neuromodulation ; 27(3): 557-564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37921733

ABSTRACT

BACKGROUND AND OBJECTIVES: Directional deep brain stimulation (DBS) electrodes are increasingly used, but conventional computed tomography (CT) is unable to directly image segmented contacts owing to physics-based resolution constraints. Postoperative electrode segment orientation assessment is necessary because of the possibility of significant deviation during or immediately after insertion. Photon-counting detector (PCD) CT is a relatively novel technology that enables high resolution imaging while addressing several limitations intrinsic to CT. We show how PCD CT can enable clear in vivo imaging of DBS electrodes, including segmented contacts and markers for all major lead manufacturers. MATERIALS AND METHODS: We describe postoperative imaging and reconstruction protocols we have developed to enable optimal lead visualization. PCD CT images were obtained of directional leads from the three major manufacturers and fused with preoperative 3T magnetic resonance imaging (MRI). Radiation dosimetry also was evaluated and compared with conventional imaging controls. Orientation estimates from directly imaged leads were compared with validated software-based reconstructions (derived from standard CT imaging artifact analysis) to quantify congruence in alignment and directional orientation. RESULTS: High-fidelity images were obtained for 15 patients, clearly indicating the segmented contacts and directional markers both on CT alone and when fused to MRI. Our routine imaging protocol is described. Ionizing radiation doses were significantly lower than with conventional CT. For most leads, the directly imaged lead orientations and depths corresponded closely to those predicted by CT artifact-based reconstructions. However, unlike direct imaging, the software reconstructions were susceptible to 180° error in orientation assessment. CONCLUSIONS: High-resolution photon-counting CT can very clearly image segmented DBS electrode contacts and directional markers and unambiguously determine lead orientation, with lower radiation than in conventional imaging. This obviates the need for further imaging and may facilitate anatomically tailored directional programming.


Subject(s)
Deep Brain Stimulation , Humans , Deep Brain Stimulation/methods , Electrodes, Implanted , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Phantoms, Imaging
2.
Eur Heart J ; 40(43): 3529-3543, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31504423

ABSTRACT

BACKGROUND: Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. METHODS AND RESULTS: We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62-0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. CONCLUSION: The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.


Subject(s)
Adipose Tissue/diagnostic imaging , Computed Tomography Angiography , Coronary Artery Disease/diagnostic imaging , Gene Expression Profiling/methods , Machine Learning , Plaque, Atherosclerotic/diagnostic imaging , Transcriptome , Adipose Tissue/pathology , Aged , Algorithms , Case-Control Studies , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Female , Follow-Up Studies , Genetic Markers , Humans , Male , Middle Aged , Phenotype , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Risk Assessment
3.
Lancet ; 392(10151): 929-939, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30170852

ABSTRACT

BACKGROUND: Coronary artery inflammation inhibits adipogenesis in adjacent perivascular fat. A novel imaging biomarker-the perivascular fat attenuation index (FAI)-captures coronary inflammation by mapping spatial changes of perivascular fat attenuation on coronary computed tomography angiography (CTA). However, the ability of the perivascular FAI to predict clinical outcomes is unknown. METHODS: In the Cardiovascular RISk Prediction using Computed Tomography (CRISP-CT) study, we did a post-hoc analysis of outcome data gathered prospectively from two independent cohorts of consecutive patients undergoing coronary CTA in Erlangen, Germany (derivation cohort) and Cleveland, OH, USA (validation cohort). Perivascular fat attenuation mapping was done around the three major coronary arteries-the proximal right coronary artery, the left anterior descending artery, and the left circumflex artery. We assessed the prognostic value of perivascular fat attenuation mapping for all-cause and cardiac mortality in Cox regression models, adjusted for age, sex, cardiovascular risk factors, tube voltage, modified Duke coronary artery disease index, and number of coronary CTA-derived high-risk plaque features. FINDINGS: Between 2005 and 2009, 1872 participants in the derivation cohort underwent coronary CTA (median age 62 years [range 17-89]). Between 2008 and 2016, 2040 patients in the validation cohort had coronary CTA (median age 53 years [range 19-87]). Median follow-up was 72 months (range 51-109) in the derivation cohort and 54 months (range 4-105) in the validation cohort. In both cohorts, high perivascular FAI values around the proximal right coronary artery and left anterior descending artery (but not around the left circumflex artery) were predictive of all-cause and cardiac mortality and correlated strongly with each other. Therefore, the perivascular FAI measured around the right coronary artery was used as a representative biomarker of global coronary inflammation (for prediction of cardiac mortality, hazard ratio [HR] 2·15, 95% CI 1·33-3·48; p=0·0017 in the derivation cohort, and 2·06, 1·50-2·83; p<0·0001 in the validation cohort). The optimum cutoff for the perivascular FAI, above which there is a steep increase in cardiac mortality, was ascertained as -70·1 Hounsfield units (HU) or higher in the derivation cohort (HR 9·04, 95% CI 3·35-24·40; p<0·0001 for cardiac mortality; 2·55, 1·65-3·92; p<0·0001 for all-cause mortality). This cutoff was confirmed in the validation cohort (HR 5·62, 95% CI 2·90-10·88; p<0·0001 for cardiac mortality; 3·69, 2·26-6·02; p<0·0001 for all-cause mortality). Perivascular FAI improved risk discrimination in both cohorts, leading to significant reclassification for all-cause and cardiac mortality. INTERPRETATION: The perivascular FAI enhances cardiac risk prediction and restratification over and above current state-of-the-art assessment in coronary CTA by providing a quantitative measure of coronary inflammation. High perivascular FAI values (cutoff ≥-70·1 HU) are an indicator of increased cardiac mortality and, therefore, could guide early targeted primary prevention and intensive secondary prevention in patients. FUNDING: British Heart Foundation, and the National Institute of Health Research Oxford Biomedical Research Centre.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Adipocytes , Adipose Tissue/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Coronary Artery Disease/mortality , Coronary Vessels/diagnostic imaging , Female , Follow-Up Studies , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Plaque, Atherosclerotic/diagnostic imaging , Predictive Value of Tests , Proportional Hazards Models , Prospective Studies , Risk Assessment , Survival Analysis , Young Adult
4.
JACC Cardiovasc Imaging ; 16(6): 800-816, 2023 06.
Article in English | MEDLINE | ID: mdl-36881425

ABSTRACT

BACKGROUND: Epicardial adipose tissue (EAT) volume is a marker of visceral obesity that can be measured in coronary computed tomography angiograms (CCTA). The clinical value of integrating this measurement in routine CCTA interpretation has not been documented. OBJECTIVES: This study sought to develop a deep-learning network for automated quantification of EAT volume from CCTA, test it in patients who are technically challenging, and validate its prognostic value in routine clinical care. METHODS: The deep-learning network was trained and validated to autosegment EAT volume in 3,720 CCTA scans from the ORFAN (Oxford Risk Factors and Noninvasive Imaging Study) cohort. The model was tested in patients with challenging anatomy and scan artifacts and applied to a longitudinal cohort of 253 patients post-cardiac surgery and 1,558 patients from the SCOT-HEART (Scottish Computed Tomography of the Heart) Trial, to investigate its prognostic value. RESULTS: External validation of the deep-learning network yielded a concordance correlation coefficient of 0.970 for machine vs human. EAT volume was associated with coronary artery disease (odds ratio [OR] per SD increase in EAT volume: 1.13 [95% CI: 1.04-1.30]; P = 0.01), and atrial fibrillation (OR: 1.25 [95% CI: 1.08-1.40]; P = 0.03), after correction for risk factors (including body mass index). EAT volume predicted all-cause mortality (HR per SD: 1.28 [95% CI: 1.10-1.37]; P = 0.02), myocardial infarction (HR: 1.26 [95% CI:1.09-1.38]; P = 0.001), and stroke (HR: 1.20 [95% CI: 1.09-1.38]; P = 0.02) independently of risk factors in SCOT-HEART (5-year follow-up). It also predicted in-hospital (HR: 2.67 [95% CI: 1.26-3.73]; P ≤ 0.01) and long-term post-cardiac surgery atrial fibrillation (7-year follow-up; HR: 2.14 [95% CI: 1.19-2.97]; P ≤ 0.01). CONCLUSIONS: Automated assessment of EAT volume is possible in CCTA, including in patients who are technically challenging; it forms a powerful marker of metabolically unhealthy visceral obesity, which could be used for cardiovascular risk stratification.


Subject(s)
Atrial Fibrillation , Cardiovascular Diseases , Coronary Artery Disease , Deep Learning , Humans , Obesity, Abdominal , Risk Factors , Predictive Value of Tests , Coronary Artery Disease/diagnostic imaging , Tomography, X-Ray Computed , Pericardium/diagnostic imaging , Heart Disease Risk Factors , Adipose Tissue/diagnostic imaging , Risk Assessment
5.
Interact Cardiovasc Thorac Surg ; 34(6): 974-981, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34718571

ABSTRACT

OBJECTIVES: We evaluated graft patency by computed tomography and explored the determinants of intraoperative mean graft flow (MGF) and its contribution to predict early graft occlusion. METHODS: One hundred and forty-eight patients under a single surgeon were prospectively enrolled. Arterial and endoscopically harvested venous conduits were used. Intraoperative graft characteristics and flows were collected. Graft patency was blindly evaluated by a follow-up computed tomography at 11.4 weeks (median). RESULTS: Graft occlusion rate was 5.2% (n = 22 of 422; 8% venous and 3% arterial). Thirteen were performed on non-significant proximal stenosis while 9 on occluded or >70% stenosed arteries. Arterial and venous graft MGF were lower in females (Parterial = 0.010, Pvenous = 0.009), with median differences of 10 and 13.5 ml/min, respectively. Arterial and venous MGF were associated positively with target vessel diameter ≥1.75 mm (Parterial = 0.025; Pvenous = 0.002) and negatively with pulsatility index (Parterial < 0.001; Pvenous < 0.001). MGF was an independent predictor of graft occlusion, adjusting for EuroSCORE-II, pulsatility index, graft size and graft type (arterial/venous). An MGF cut-off of 26.5 ml/min for arterial (sensitivity 83.3%, specificity 80%) and 36.5 ml/min for venous grafts (sensitivity 75%, specificity 62%) performed well in predicting early graft occlusion. CONCLUSIONS: We demonstrate that MGF absolute values are influenced by coronary size, gender and graft type. Intraoperative MGF of >26.5 ml/min for arterial and >36.5 ml/min for venous grafts is the most reliable independent predictor of early graft patency. Modern-era coronary artery bypass graft is associated with low early graft failure rates when transit time flow measurement is used to provide effective intraoperative quality assurance.


Subject(s)
Coronary Artery Bypass , Tomography, X-Ray Computed , Arteries , Blood Flow Velocity , Coronary Angiography , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Female , Humans , Vascular Patency
6.
Lancet Digit Health ; 4(10): e705-e716, 2022 10.
Article in English | MEDLINE | ID: mdl-36038496

ABSTRACT

BACKGROUND: Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19. METHODS: For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes. FINDINGS: Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2·97 [95% CI 1·43-6·27], p=0·0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1·89 [95% CI 1·17-3·20] per SD, p=0·012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [≥6·99] vs low [<6·99] C19-RS; hazard ratio [HR] 3·31 [95% CI 1·49-7·33], p=0·0033; and 2·58 [1·10-6·05], p=0·028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8·24 (95% CI 2·16-31·36, p=0·0019) in patients who received no dexamethasone treatment, but 2·27 (0·69-7·55, p=0·18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0·61, p=0·00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways. INTERPRETATION: Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. FUNDING: Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiography , Artificial Intelligence , COVID-19/diagnostic imaging , Cytokines , Humans , Inflammation/diagnostic imaging , Prospective Studies , State Medicine , Tomography, X-Ray Computed
7.
Cardiovasc Res ; 117(13): 2677-2690, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34450625

ABSTRACT

AIMS: Coronary computed tomography angiography (CCTA) is a first-line modality in the investigation of suspected coronary artery disease (CAD). Mapping of perivascular fat attenuation index (FAI) on routine CCTA enables the non-invasive detection of coronary artery inflammation by quantifying spatial changes in perivascular fat composition. We now report the performance of a new medical device, CaRi-Heart®, which integrates standardized FAI mapping together with clinical risk factors and plaque metrics to provide individualized cardiovascular risk prediction. METHODS AND RESULTS: The study included 3912 consecutive patients undergoing CCTA as part of clinical care in the USA (n = 2040) and Europe (n = 1872). These cohorts were used to generate age-specific nomograms and percentile curves as reference maps for the standardized interpretation of FAI. The first output of CaRi-Heart® is the FAI-Score of each coronary artery, which provides a measure of coronary inflammation adjusted for technical, biological, and anatomical characteristics. FAI-Score is then incorporated into a risk prediction algorithm together with clinical risk factors and CCTA-derived coronary plaque metrics to generate the CaRi-Heart® Risk that predicts the likelihood of a fatal cardiac event at 8 years. CaRi-Heart® Risk was trained in the US population and its performance was validated externally in the European population. It improved risk discrimination over a clinical risk factor-based model [Δ(C-statistic) of 0.085, P = 0.01 in the US Cohort and 0.149, P < 0.001 in the European cohort] and had a consistent net clinical benefit on decision curve analysis above a baseline traditional risk factor-based model across the spectrum of cardiac risk. CONCLUSION: Mapping of perivascular FAI on CCTA enables the non-invasive detection of coronary artery inflammation by quantifying spatial changes in perivascular fat composition. We now report the performance of a new medical device, CaRi-Heart®, which allows standardized measurement of coronary inflammation by calculating the FAI-Score of each coronary artery. The CaRi-Heart® device provides a reliable prediction of the patient's absolute risk for a fatal cardiac event by incorporating traditional cardiovascular risk factors along with comprehensive CCTA coronary plaque and perivascular adipose tissue phenotyping. This integration advances the prognostic utility of CCTA for individual patients and paves the way for its use as a dual diagnostic and prognostic tool among patients referred for CCTA.


Subject(s)
Adipose Tissue/diagnostic imaging , Computed Tomography Angiography/standards , Coronary Angiography/standards , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Decision Support Techniques , Inflammation/diagnostic imaging , Nomograms , Adiposity , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Cloud Computing , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , England , Female , Germany , Heart Disease Risk Factors , Humans , Inflammation/mortality , Inflammation/therapy , Male , Middle Aged , Ohio , Predictive Value of Tests , Prognosis , Risk Assessment , Time Factors , Young Adult
8.
Sci Transl Med ; 11(510)2019 09 18.
Article in English | MEDLINE | ID: mdl-31534019

ABSTRACT

Obesity is associated with changes in the secretome of adipose tissue (AT), which affects the vasculature through endocrine and paracrine mechanisms. Wingless-related integration site 5A (WNT5A) and secreted frizzled-related protein 5 (SFRP5), adipokines that regulate noncanonical Wnt signaling, are dysregulated in obesity. We hypothesized that WNT5A released from AT exerts endocrine and paracrine effects on the arterial wall through noncanonical RAC1-mediated Wnt signaling. In a cohort of 1004 humans with atherosclerosis, obesity was associated with increased WNT5A bioavailability in the circulation and the AT, higher expression of WNT5A receptors Frizzled 2 and Frizzled 5 in the human arterial wall, and increased vascular oxidative stress due to activation of NADPH oxidases. Plasma concentration of WNT5A was elevated in patients with coronary artery disease compared to matched controls and was independently associated with calcified coronary plaque progression. We further demonstrated that WNT5A induces arterial oxidative stress and redox-sensitive migration of vascular smooth muscle cells via Frizzled 2-mediated activation of a previously uncharacterized pathway involving the deubiquitinating enzyme ubiquitin-specific protease 17 (USP17) and the GTPase RAC1. Our study identifies WNT5A and its downstream vascular signaling as a link between obesity and vascular disease pathogenesis, with translational implications in humans.


Subject(s)
Adipose Tissue/metabolism , Blood Vessels/metabolism , Endopeptidases/metabolism , NADPH Oxidases/metabolism , Obesity/metabolism , Signal Transduction , Wnt-5a Protein/metabolism , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adipose Tissue/drug effects , Animals , Arteries/metabolism , Arteries/pathology , Atherosclerosis/blood , Atherosclerosis/complications , Atherosclerosis/pathology , Blood Vessels/drug effects , Cell Movement/drug effects , Enzyme Activation/drug effects , Ligands , Mice, Inbred C57BL , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Obesity/complications , Oxidants/toxicity , Oxidation-Reduction , Signal Transduction/drug effects , Vascular Diseases/complications , Vascular Diseases/metabolism , Wnt-5a Protein/blood
10.
Eur J Cardiothorac Surg ; 51(5): 952-958, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28379404

ABSTRACT

OBJECTIVES: External stents significantly reduce intimal hyperplasia and improve lumen uniformity and flow pattern in saphenous vein grafts (SVG) 1 year after coronary artery bypass grafting. However, recent studies have shown that at 1 year there is a lower patency of externally stented SVG to the right coronary artery (RCA) (55-60%) when compared to the left sided coronary arteries (85-90%). In the current study, we investigated whether avoidance of both fixation of the external stent to the anastomoses and the use of metal clips to ligate SVG side branches would improve the early patency of externally stented SVG to the RCA. METHODS: Thirty patients received a SVG to the right territory supported with an external stent. Graft patency was confirmed at the end of surgery in all patients. The primary endpoint was SVG patency assessed by computed tomography angiography (CTA) at 3-6 months. Graft failure was defined as > 50% stenosis. RESULTS: Twenty-nine patients (96.6%) completed the follow up period and CT angiography data was available for a total of 43 SVGs, (29 supported and 14 unsupported SVGs) and 47 arterial grafts. Patency of stented SVGs was 86.2% (25/29 on CTA). All non-stented SVGs to the left territory were patent. Patency rates of the left internal mammary arteries and right internal mammary arteries grafts were 96.6% and 83.3%, respectively. CONCLUSIONS: Avoidance of both metallic clips to ligate side branches and of fixation of venous external support trial (VEST) stents to the anastomoses mark a significant improvement in patency of stented SVG to the right coronary territory.


Subject(s)
Coronary Artery Bypass , Coronary Vessels , Saphenous Vein , Stents , Aged , Coronary Angiography , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Coronary Artery Bypass/statistics & numerical data , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Female , Humans , Male , Middle Aged , Prospective Studies , Saphenous Vein/diagnostic imaging , Saphenous Vein/surgery , Saphenous Vein/transplantation , Vascular Patency
11.
Sci Transl Med ; 9(398)2017 07 12.
Article in English | MEDLINE | ID: mdl-28701474

ABSTRACT

Early detection of vascular inflammation would allow deployment of targeted strategies for the prevention or treatment of multiple disease states. Because vascular inflammation is not detectable with commonly used imaging modalities, we hypothesized that phenotypic changes in perivascular adipose tissue (PVAT) induced by vascular inflammation could be quantified using a new computerized tomography (CT) angiography methodology. We show that inflamed human vessels release cytokines that prevent lipid accumulation in PVAT-derived preadipocytes in vitro, ex vivo, and in vivo. We developed a three-dimensional PVAT analysis method and studied CT images of human adipose tissue explants from 453 patients undergoing cardiac surgery, relating the ex vivo images with in vivo CT scan information on the biology of the explants. We developed an imaging metric, the CT fat attenuation index (FAI), that describes adipocyte lipid content and size. The FAI has excellent sensitivity and specificity for detecting tissue inflammation as assessed by tissue uptake of 18F-fluorodeoxyglucose in positron emission tomography. In a validation cohort of 273 subjects, the FAI gradient around human coronary arteries identified early subclinical coronary artery disease in vivo, as well as detected dynamic changes of PVAT in response to variations of vascular inflammation, and inflamed, vulnerable atherosclerotic plaques during acute coronary syndromes. Our study revealed that human vessels exert paracrine effects on the surrounding PVAT, affecting local intracellular lipid accumulation in preadipocytes, which can be monitored using a CT imaging approach. This methodology can be implemented in clinical practice to noninvasively detect plaque instability in the human coronary vasculature.


Subject(s)
Adipose Tissue/blood supply , Adipose Tissue/pathology , Coronary Vessels/pathology , Imaging, Three-Dimensional , Inflammation/pathology , Adipocytes/pathology , Adipogenesis , Cell Differentiation , Cell Proliferation , Cell Size , Coronary Vessels/diagnostic imaging , Cytokines/metabolism , Humans , Inflammation/diagnostic imaging , Lipids/chemistry , Phenotype , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Tomography, X-Ray Computed
12.
Sci Rep ; 6: 32651, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27623086

ABSTRACT

Extracellular miRNAs are detectable in biofluids and represent a novel class of disease biomarker. Although many studies have utilized archived plasma for miRNA biomarker discovery, the effects of processing and storage have not been rigorously studied. Previous reports have suggested plasma samples are commonly contaminated by platelets, significantly confounding the measurement of extracellular miRNA, which was thought to be easily addressed by additional post-thaw plasma processing. In a case-control study of archived plasma, we noted a significant correlation between miRNA levels and platelet counts despite post-thaw processing. We thus examined the effects of a single freeze/thaw cycle on microparticles (MPs) and miRNA levels, and show that a single freeze/thaw cycle of plasma dramatically increases the number of platelet-derived MPs, contaminates the extracellular miRNA pool, and profoundly affects the levels of miRNAs detected. The measurement of extracellular miRNAs in archived samples is critically dependent on the removal of residual platelets prior to freezing plasma samples. Many previous clinical studies of extracellular miRNA in archived plasma should be interpreted with caution and future studies should avoid the effects of platelet contamination.


Subject(s)
Blood Platelets , MicroRNAs/blood , Specimen Handling/methods , Cell-Derived Microparticles/genetics , Flow Cytometry , Freezing , Humans , MicroRNAs/isolation & purification , Platelet Count
13.
J Am Coll Cardiol ; 68(1): 53-63, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27364051

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) and obesity are associated with nonalcoholic fatty liver disease, cardiomyopathy, and cardiovascular mortality. Both show stronger links between ectopic and visceral fat deposition, and an increased cardiometabolic risk compared with subcutaneous fat. OBJECTIVES: This study investigated whether lean patients (Ln) with T2D exhibit increased ectopic and visceral fat deposition and whether these are linked to cardiac and hepatic changes. METHODS: Twenty-seven obese patients (Ob) with T2D, 15 Ln-T2D, and 12 normal-weight control subjects were studied. Subjects underwent cardiac computed tomography, cardiac magnetic resonance imaging (MRI), proton and phosphorus MR spectroscopy, and multiparametric liver MR, including hepatic proton MRS, T1- and T2*-mapping yielding "iron-corrected T1" [cT1]. RESULTS: Diabetes, with or without obesity, was associated with increased myocardial triglyceride content (p = 0.01), increased hepatic triglyceride content (p = 0.04), and impaired myocardial energetics (p = 0.04). Although cardiac structural changes, steatosis, and energetics were similar between the T2D groups, epicardial fat (p = 0.04), hepatic triglyceride (p = 0.01), and insulin resistance (p = 0.03) were higher in Ob-T2D. Epicardial fat, hepatic triglyceride, and insulin resistance correlated negatively with systolic strain and diastolic strain rates, which were only significantly impaired in Ob-T2D (p < 0.001 and p = 0.006, respectively). Fibroinflammatory liver disease (elevated cT1) was only evident in Ob-T2D patients. cT1 correlated with hepatic and epicardial fat (p < 0.001 and p = 0.01, respectively). CONCLUSIONS: Irrespective of body mass index, diabetes is related to significant abnormalities in cardiac structure, energetics, and cardiac and hepatic steatosis. Obese patients with T2D show a greater propensity for ectopic and visceral fat deposition.


Subject(s)
Adipose Tissue/pathology , Diabetes Mellitus, Type 2/complications , Fatty Liver/etiology , Fatty Liver/pathology , Intra-Abdominal Fat/pathology , Liver/pathology , Obesity/complications , Obesity/pathology , Pericardium/pathology , Diabetes Mellitus, Type 2/metabolism , Fatty Liver/metabolism , Female , Humans , Insulin Resistance , Male , Middle Aged , Obesity/metabolism , Thinness
14.
Patient ; 2(4): 211-20, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-22273243

ABSTRACT

BACKGROUND: : Self-regulation theory predicts that patient behavior is determined by the patient's assessment of his/her condition (illness presentation) and related health goals. Patients will adapt their behavior to achieve those goals. However, there are multiple levels of goals. In such cases, those lower-level goals (health goals) that are strongly correlated with higher-level goals (i.e. quality of life [QOL]) are more likely to drive patient behavior. Medication non-compliance is a health behavior that challenges healthcare practitioners. Thus, the primary aim of this paper is to explore the relationship between the lower-level goals for taking medication with higher-level goals. This paper also identifies patient-perceived barriers and facilitators toward achieving goals as they may relate to patients' illness representation. OBJECTIVES: : To identify lower- and higher-level goals associated with medication use for chronic conditions. To determine if there is a relationship between higher-level (global) goals and lower-level (health-related) goals. To identify patient-perceived facilitators and barriers to achieving those goals. METHODS: : This was a prospective, observational study using a mailed survey. The setting was a US Midwestern state-wide survey. Participants were patients living in the community with hypertension, heart disease, diabetes mellitus, or arthritis, and taking prescription medication for any one of those conditions. The main outcome measures were lower- and higher-level goals related to medication use. The survey asked the participants if they had achieved their goals and to identify factors that may pose as barriers or facilitators to achieving them. Pearson correlation was used to test the relationship between the lower- and higher-level goals at p < 0.05. RESULTS: : Responses from 292 qualifying patients were obtained. A significant relationship between lower- and higher-level goals existed (p = 0.03). Preventing future health problems was the most important lower-level goal for almost half of the respondents. Approximately 43% of the respondents said 'improving or maintaining quality of life' was their most important higher-level goal. Elderly respondents (65 years or older) said that being able to carry out daily activities on their own was their most important higher-level goal. To achieve this goal, they identified 'preventing future health problems' as the associated lower-level goal. One-third of the respondents stated that they had not yet achieved their medication-related goals. Patients identified good communication with their physicians (35%), the effectiveness of the drug product (32%), and their ability to monitor their condition (20%) as important factors toward helping them achieve their goals. Medication costs (30%), drug adverse effects (25%), and the lack of drug effectiveness (22%) were factors that patients identified as barriers to achieving their goals. CONCLUSION: : There is a significant and positive relationship between the lower- and higher-level goals. Healthcare providers can work with their patients to achieve their goals. Both good communication with the prescriber and the effectiveness of the drug product were identified as the most important facilitator by one-third of the respondents. Future research should study if relating the impact of good symptom control or the reduction of future health risks to QOL or longevity, as deemed relevant by the patient, influences medication adherence behavior.

16.
Microbiology (Reading) ; 151(Pt 7): 2373-2383, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16000727

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) elicits the starvation-stress response (SSR) due to starvation for an essential nutrient, e.g. a carbon/energy source (C-source). As part of the SSR, the alternative sigma factor sigma(E) is activated and induced. The authors suspect that this activation is, in part, triggered by changes in the S. Typhimurium cell envelope occurring during the adaptation from growth to carbon/energy starvation (C-starvation), and resulting in an increased need for sigma(E)-regulated factors involved in the proper folding and assembly of newly synthesized proteins destined for this extracytoplasmic compartment. This led to the hypothesis that a sigma(E) activation signal might arise during C-source shifts that cause the induction of proteins localized to the extracytoplasmic compartment, i.e. the outer membrane or periplasm, of the cell. To test this hypothesis, cultures were grown in minimal medium containing enough glucose to reach mid-exponential-phase, plus a non-limiting amount of a secondary 'less-preferred' but utilizable carbon/energy source. The sigma(E) activity was then monitored using plasmids carrying rpoEP1- and rpoEP2-lacZ transcriptional fusions, which exhibit sigma(E)-independent and -dependent lacZ expression, respectively. The secondary C-sources maltose, succinate and citrate, which have extracytoplasmic components involved in their utilization (e.g. LamB), resulted in a discernible diauxic lag period and a sustained increase in sigma(E) activity. Growth transition from glucose to other utilizable phosphotransferase (PTS) and non-PTS C-sources, such as trehalose, mannose, mannitol, fructose, glycerol, d-galactose or l-arabinose, did not cause a discernible diauxic lag period or a sustained increase in sigma(E) activity. Interestingly, a shift from glucose to melibiose, which does not use an extracytoplasmic-localized protein for uptake, did cause an observable diauxic lag period but did not result in a sustained increase in sigma(E) activity. In addition, overexpression of LamB from an arabinose-inducible promoter leads to a significant increase in sigma(E) activity in the absence of a glucose to maltose shift or C-starvation. Furthermore, a DeltalamB : : Omega-Km(r) mutant, lacking the LamB maltoporin, exhibited an approximately twofold reduction in the sustained sigma(E) activity observed during a glucose to maltose shift, again supporting the hypothesis. Interestingly, the LamB protein lacks the typical Y-X-F terminal tripeptide of the OmpC-like peptides that activate DegS protease activity leading to sigma(E) activation. It does, however, possess a terminal pentapeptide (Q-M-E-I-W-W) that may function as a ligand for a putative class II PDZ-binding site. The authors therefore propose that the sigma(E) regulon of S. Typhimurium not only is induced in response to deleterious environmental conditions, but also plays a role in the adaptation of cells to new growth conditions that necessitate changes in the extracytoplasmic compartment of the cell, which may involve alternative signal recognition and activation pathways that are independent of DegS.


Subject(s)
Bacterial Proteins/metabolism , Carbon/metabolism , Salmonella typhimurium/metabolism , Sigma Factor/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Glucose/metabolism , Salmonella typhimurium/genetics , Sigma Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL