Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Language
Publication year range
1.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-340091

ABSTRACT

Passive transfer of convalescent plasma or serum is a time-honored strategy for treating infectious diseases. Human convalescent plasma containing antibodies against SARS-CoV-2 is currently being used to treat COVID-19 patients. However, most patients have been treated outside of randomized clinical trials making it difficult to determine the efficacy of this approach. Here, we assessed the efficacy of convalescent sera in a newly developed African green monkey model of COVID-19. Groups of SARS-CoV-2-infected animals were treated with pooled convalescent sera containing either high or low to moderate anti-SARS-CoV-2 neutralizing antibody titers. Differences in viral load and disease pathology were minimal between monkeys that received the lower titer convalescent sera and untreated controls. However, and importantly, lower levels of SARS-CoV-2 in respiratory compartments, reduced gross and histopathological lesion severity in the lungs, and reductions in several parameters associated with coagulation and inflammatory processes were observed in monkeys that received convalescent sera versus untreated controls. Our data support human studies suggesting that convalescent plasma therapy is an effective strategy if donors with high level of antibodies against SARS-CoV-2 are employed and if recipients are at an early stage of disease.

2.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-248880

ABSTRACT

Entry of SARS-CoV-2 is facilitated by endogenous and exogenous proteases. These proteases proteolytically activate the SARS-CoV-2 spike glycoprotein and are key modulators of virus tropism. We show that SARS-CoV-2 naive serum exhibits significant inhibition of SARS-CoV-2 entry. We identify alpha-1-antitrypsin (AAT) as the major serum protease inhibitor that potently restrict protease-mediated entry of SARS-CoV-2. AAT inhibition of protease-mediated SARS-CoV-2 entry in vitro occurs at concentrations far below what is present in serum and bronchoalveolar tissues, suggesting that AAT effects are physiologically relevant. Moreover, AAT deficiency affects up to 20% of the population and its symptomatic manifestations coincides with many risk factors associated with severe COVID-19 disease. In addition to the effects that AAT may have on viral entry itself, we argue that the anti-inflammatory and coagulation regulatory activity of AAT have implications for coronavirus disease 2019 (COVID-19) pathogenicity, SARS-CoV-2 tissue restriction, convalescent plasma therapies, and even potentially AAT therapy.

3.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-100289

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen candidate vaccines and treatments. Nonhuman primates (NHP) are considered the gold standard model for many infectious pathogens as they usually best reflect the human condition. Here, we show that African green monkeys support a high level of SARS-CoV-2 replication and develop pronounced respiratory disease that may be more substantial than reported for other NHP species including cynomolgus and rhesus macaques. In addition, SARS-CoV-2 was detected in mucosal samples of all animals including feces of several animals as late as 15 days after virus exposure. Importantly, we show that virus replication and respiratory disease can be produced in African green monkeys using a much lower and more natural dose of SARS-CoV-2 than has been employed in other NHP studies.

4.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-318972

ABSTRACT

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. One Sentence SummaryLY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.

5.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-442182

ABSTRACT

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In BriefLY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. HighlightsO_LILY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variants C_LIO_LINo loss of potency against currently circulating variants C_LIO_LIBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID database C_LIO_LIBreadth of neutralizing activity and potency supports clinical development C_LI

SELECTION OF CITATIONS
SEARCH DETAIL