Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Physiol Endocrinol Metab ; 313(1): E37-E47, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28292762

ABSTRACT

G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.


Subject(s)
Appetite Regulation/genetics , Body Weight/genetics , Eating/genetics , Glucagon-Like Peptide 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Weight Loss/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics
2.
Bioorg Med Chem Lett ; 27(4): 1109-1114, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28111141

ABSTRACT

A spirocyclic class of ROMK inhibitors was developed containing a structurally diverse heterocyclic sulfone moiety and spirocyclic core starting from lead 1. These compounds not only displayed exquisite ROMK potency but significantly improved selectivity over hERG. The lead compounds were found to have favorable pharmacokinetic properties and displayed robust diuretic, natriuretic and blood pressure lowering effects in spontaneously hypertensive rats.


Subject(s)
Diuretics/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Sulfones/pharmacology , Animals , Heterocyclic Compounds/chemical synthesis , Rats , Rats, Inbred SHR
3.
Bioorg Med Chem Lett ; 23(12): 3640-5, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23652221

ABSTRACT

A series of benzazepinones were synthesized and evaluated for block of Nav1.7 sodium channels. Compound 30 from this series displayed potent channel block, good selectivity versus other targets, and dose-dependent oral efficacy in a rat model of neuropathic pain.


Subject(s)
Benzazepines/pharmacology , Neuralgia/drug therapy , Sodium Channel Blockers/pharmacology , Animals , Disease Models, Animal , Rats
4.
PLoS One ; 12(10): e0186033, 2017.
Article in English | MEDLINE | ID: mdl-29053717

ABSTRACT

GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient.


Subject(s)
Glucose/metabolism , Incretins/metabolism , Insulin/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , CHO Cells , Cell Line , Cricetulus , Glucagon/metabolism , Glucose Tolerance Test , Humans , Insulin Secretion , Islets of Langerhans/metabolism , Male , Mice , Rats
5.
ACS Med Chem Lett ; 3(5): 367-72, 2012 May 10.
Article in English | MEDLINE | ID: mdl-24900480

ABSTRACT

The renal outer medullary potassium channel (ROMK or Kir1.1) is a putative drug target for a novel class of diuretics that could be used for the treatment of hypertension and edematous states such as heart failure. An internal high-throughput screening campaign identified 1,4-bis(4-nitrophenethyl)piperazine (5) as a potent ROMK inhibitor. It is worth noting that this compound was identified as a minor impurity in a screening hit that was responsible for all of the initially observed ROMK activity. Structure-activity studies resulted in analogues with improved rat pharmacokinetic properties and selectivity over the hERG channel, providing tool compounds that can be used for in vivo pharmacological assessment. The featured ROMK inhibitors were also selective against other members of the inward rectifier family of potassium channels.

SELECTION OF CITATIONS
SEARCH DETAIL