Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38051702

ABSTRACT

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Plants/genetics , Stress, Physiological/genetics , Plant Leaves/genetics , Gene Expression , Gene Expression Regulation, Plant/genetics
2.
Proc Natl Acad Sci U S A ; 120(10): e2216894120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848555

ABSTRACT

Drought tolerance is a highly complex trait controlled by numerous interconnected pathways with substantial variation within and across plant species. This complexity makes it difficult to distill individual genetic loci underlying tolerance, and to identify core or conserved drought-responsive pathways. Here, we collected drought physiology and gene expression datasets across diverse genotypes of the C4 cereals sorghum and maize and searched for signatures defining water-deficit responses. Differential gene expression identified few overlapping drought-associated genes across sorghum genotypes, but using a predictive modeling approach, we found a shared core drought response across development, genotype, and stress severity. Our model had similar robustness when applied to datasets in maize, reflecting a conserved drought response between sorghum and maize. The top predictors are enriched in functions associated with various abiotic stress-responsive pathways as well as core cellular functions. These conserved drought response genes were less likely to contain deleterious mutations than other gene sets, suggesting that core drought-responsive genes are under evolutionary and functional constraints. Our findings support a broad evolutionary conservation of drought responses in C4 grasses regardless of innate stress tolerance, which could have important implications for developing climate resilient cereals.


Subject(s)
Sorghum , Zea mays , Zea mays/genetics , Sorghum/genetics , Droughts , Edible Grain/genetics , Poaceae
3.
Plant J ; 119(2): 844-860, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38812347

ABSTRACT

Transcriptome-wide association studies (TWAS) can provide single gene resolution for candidate genes in plants, complementing genome-wide association studies (GWAS) but efforts in plants have been met with, at best, mixed success. We generated expression data from 693 maize genotypes, measured in a common field experiment, sampled over a 2-h period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize the accurate estimation of transcript abundance. TWAS could identify roughly 10 times as many genes likely to play a role in flowering time regulation as GWAS conducted data from the same experiment. TWAS using mature leaf tissue identified known true-positive flowering time genes known to act in the shoot apical meristem, and trait data from a new environment enabled the identification of additional flowering time genes without the need for new expression data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize flowering time gene through trans-eQTL interactions. Collectively these results suggest the gene expression resource described here can link genes to functions across different plant phenotypes expressed in a range of tissues and scored in different experiments.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Genome-Wide Association Study , Quantitative Trait Loci , Transcriptome , Zea mays , Zea mays/genetics , Zea mays/physiology , Flowers/genetics , Flowers/physiology , Quantitative Trait Loci/genetics , Genotype , Phenotype , Genes, Plant/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Gene Expression Profiling
4.
Plant Physiol ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37925649

ABSTRACT

Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of N fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multi-scale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.

5.
Int J Mol Sci ; 25(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39273254

ABSTRACT

The fruit surface is a critical first line of defense against environmental stress. Overlaying the fruit epidermis is the cuticle, comprising a matrix of cutin monomers and waxes that provides protection and mechanical support throughout development. The epidermal layer of the cucumber (Cucumis sativus L.) fruit also contains prominent lipid droplets, which have recently been recognized as dynamic organelles involved in lipid storage and metabolism, stress response, and the accumulation of specialized metabolites. Our objective was to genetically characterize natural variations for traits associated with the cuticle and lipid droplets in cucumber fruit. Phenotypic characterization and genome-wide association studies (GWAS) were performed using a resequenced cucumber core collection accounting for >96% of the allelic diversity present in the U.S. National Plant Germplasm System collection. The collection was grown in the field, and fruit were harvested at 16-20 days post-anthesis, an age when the cuticle thickness and the number and size of lipid droplets have stabilized. Fresh fruit tissue sections were prepared to measure cuticle thickness and lipid droplet size and number. The collection showed extensive variation for the measured traits. GWAS identified several QTLs corresponding with genes previously implicated in cuticle or lipid biosynthesis, including the transcription factor SHINE1/WIN1, as well as suggesting new candidate genes, including a potential lipid-transfer domain containing protein found in association with isolated lipid droplets.


Subject(s)
Cucumis sativus , Fruit , Genome-Wide Association Study , Lipid Droplets , Quantitative Trait Loci , Cucumis sativus/genetics , Cucumis sativus/metabolism , Cucumis sativus/growth & development , Fruit/genetics , Fruit/metabolism , Lipid Droplets/metabolism , Phenotype , Polymorphism, Single Nucleotide , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Epidermis/genetics , Plant Epidermis/metabolism
6.
Plant Cell Rep ; 40(9): 1679-1693, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34091722

ABSTRACT

KEY MESSAGE: Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12-18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.


Subject(s)
MADS Domain Proteins/genetics , Plant Proteins/genetics , Seeds/growth & development , Zea mays/growth & development , Zea mays/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Flowers/genetics , Gene Expression Regulation, Plant , Phenotype , Plants, Genetically Modified , Seeds/genetics
7.
G3 (Bethesda) ; 14(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39158127

ABSTRACT

Plant breeding is a complex endeavor that is almost always multi-objective in nature. In recent years, stochastic breeding simulations have been used by breeders to assess the merits of alternative breeding strategies and assist in decision-making. In addition to simulations, visualization of a Pareto frontier for multiple competing breeding objectives can assist breeders in decision-making. This paper introduces Python Breeding Optimizer and Simulator (PyBrOpS), a Python package capable of performing multi-objective optimization of breeding objectives and stochastic simulations of breeding pipelines. PyBrOpS is unique among other simulation platforms in that it can perform multi-objective optimizations and incorporate these results into breeding simulations. PyBrOpS is built to be highly modular and has a script-based philosophy, making it highly extensible and customizable. In this paper, we describe some of the main features of PyBrOpS and demonstrate its ability to map Pareto frontiers for breeding possibilities and perform multi-objective selection in a simulated breeding pipeline.


Subject(s)
Computer Simulation , Plant Breeding , Software , Plant Breeding/methods , Algorithms , Breeding , Models, Genetic
8.
Sci Rep ; 14(1): 19340, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164367

ABSTRACT

The quantitative nature of fusarium head blight (FHB) resistance requires further exploration of the wheat genome to identify regions conferring resistance. In this study, we explored the application of hyperspectral imaging of Fusarium-infected wheat kernels and identified regions of the wheat genome contributing significantly to the accumulation of Deoxynivalenol (DON) mycotoxin. Strong correlations were identified between hyperspectral reflectance values for 204 wavebands in the 397-673 nm range and DON mycotoxin. Dimensionality reduction using principal components was performed for all 204 wavebands and 38 sliding windows across the range of wavebands. The first principal component (PC1) of all 204 wavebands explained 70% of the total variation in waveband reflectance values and was highly correlated with DON mycotoxin. PC1 was used as a phenotype in a genome wide association study and a large effect QTL on chromosome 2D was identified for PC1 of all wavebands as well as nearly all 38 sliding windows. The allele contributing variation in PC1 values also led to a substantial reduction in DON. The 2D polymorphism affecting DON levels localized to the exon of TraesCS2D02G524600 which is upregulated in wheat spike and rachis tissues during FHB infection. This work demonstrates the value of hyperspectral imaging as a correlated trait for investigating the genetic basis of resistance and developing wheat varieties with enhanced resistance to FHB.


Subject(s)
Fusarium , Genome-Wide Association Study , Plant Diseases , Quantitative Trait Loci , Trichothecenes , Triticum , Triticum/microbiology , Triticum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Phenotype , Genome, Plant , Disease Resistance/genetics , Hyperspectral Imaging/methods
9.
Genome Biol ; 25(1): 8, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172911

ABSTRACT

Dramatic improvements in measuring genetic variation across agriculturally relevant populations (genomics) must be matched by improvements in identifying and measuring relevant trait variation in such populations across many environments (phenomics). Identifying the most critical opportunities and challenges in genome to phenome (G2P) research is the focus of this paper. Previously (Genome Biol, 23(1):1-11, 2022), we laid out how Agricultural Genome to Phenome Initiative (AG2PI) will coordinate activities with USA federal government agencies expand public-private partnerships, and engage with external stakeholders to achieve a shared vision of future the AG2PI. Acting on this latter step, AG2PI organized the "Thinking Big: Visualizing the Future of AG2PI" two-day workshop held September 9-10, 2022, in Ames, Iowa, co-hosted with the United State Department of Agriculture's National Institute of Food and Agriculture (USDA NIFA). During the meeting, attendees were asked to use their experience and curiosity to review the current status of agricultural genome to phenome (AG2P) work and envision the future of the AG2P field. The topic summaries composing this paper are distilled from two 1.5-h small group discussions. Challenges and solutions identified across multiple topics at the workshop were explored. We end our discussion with a vision for the future of agricultural progress, identifying two areas of innovation needed: (1) innovate in genetic improvement methods development and evaluation and (2) innovate in agricultural research processes to solve societal problems. To address these needs, we then provide six specific goals that we recommend be implemented immediately in support of advancing AG2P research.


Subject(s)
Agriculture , Phenomics , United States , Genomics
10.
Nat Commun ; 14(1): 6904, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903778

ABSTRACT

Genotype-by-environment (G×E) interactions can significantly affect crop performance and stability. Investigating G×E requires extensive data sets with diverse cultivars tested over multiple locations and years. The Genomes-to-Fields (G2F) Initiative has tested maize hybrids in more than 130 year-locations in North America since 2014. Here, we curate and expand this data set by generating environmental covariates (using a crop model) for each of the trials. The resulting data set includes DNA genotypes and environmental data linked to more than 70,000 phenotypic records of grain yield and flowering traits for more than 4000 hybrids. We show how this valuable data set can serve as a benchmark in agricultural modeling and prediction, paving the way for countless G×E investigations in maize. We use multivariate analyses to characterize the data set's genetic and environmental structure, study the association of key environmental factors with traits, and provide benchmarks using genomic prediction models.


Subject(s)
Gene-Environment Interaction , Zea mays , Zea mays/genetics , Genotype , Phenotype , Genomics/methods
11.
G3 (Bethesda) ; 13(4)2023 04 11.
Article in English | MEDLINE | ID: mdl-36625555

ABSTRACT

Accurate prediction of the phenotypic outcomes produced by different combinations of genotypes, environments, and management interventions remains a key goal in biology with direct applications to agriculture, research, and conservation. The past decades have seen an expansion of new methods applied toward this goal. Here we predict maize yield using deep neural networks, compare the efficacy of 2 model development methods, and contextualize model performance using conventional linear and machine learning models. We examine the usefulness of incorporating interactions between disparate data types. We find deep learning and best linear unbiased predictor (BLUP) models with interactions had the best overall performance. BLUP models achieved the lowest average error, but deep learning models performed more consistently with similar average error. Optimizing deep neural network submodules for each data type improved model performance relative to optimizing the whole model for all data types at once. Examining the effect of interactions in the best-performing model revealed that including interactions altered the model's sensitivity to weather and management features, including a reduction of the importance scores for timepoints expected to have a limited physiological basis for influencing yield-those at the extreme end of the season, nearly 200 days post planting. Based on these results, deep learning provides a promising avenue for the phenotypic prediction of complex traits in complex environments and a potential mechanism to better understand the influence of environmental and genetic factors.


Subject(s)
Deep Learning , Neural Networks, Computer , Machine Learning , Genotype , Multifactorial Inheritance
12.
BMC Res Notes ; 16(1): 148, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37461058

ABSTRACT

OBJECTIVES: The Genomes to Fields (G2F) 2022 Maize Genotype by Environment (GxE) Prediction Competition aimed to develop models for predicting grain yield for the 2022 Maize GxE project field trials, leveraging the datasets previously generated by this project and other publicly available data. DATA DESCRIPTION: This resource used data from the Maize GxE project within the G2F Initiative [1]. The dataset included phenotypic and genotypic data of the hybrids evaluated in 45 locations from 2014 to 2022. Also, soil, weather, environmental covariates data and metadata information for all environments (combination of year and location). Competitors also had access to ReadMe files which described all the files provided. The Maize GxE is a collaborative project and all the data generated becomes publicly available [2]. The dataset used in the 2022 Prediction Competition was curated and lightly filtered for quality and to ensure naming uniformity across years.


Subject(s)
Genome, Plant , Zea mays , Phenotype , Zea mays/genetics , Genotype , Genome, Plant/genetics , Edible Grain/genetics
13.
BMC Genom Data ; 24(1): 29, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231352

ABSTRACT

OBJECTIVES: This report provides information about the public release of the 2018-2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions. DATA DESCRIPTION: Datasets include phenotypic, climatic, and soil measurements, metadata information, and inbred genotypic information for each combination of location and year. Collaborators in the G2F initiative collected data for each location and year; members of the group responsible for coordination and data processing combined all the collected information and removed obvious erroneous data. The collaborators received the data before the DOI release to verify and declare that the data generated in their own locations was accurate. ReadMe and description files are available for each dataset. Previous years of evaluation are already publicly available, with common hybrids present to connect across all locations and years evaluated since this project's inception.


Subject(s)
Genome, Plant , Zea mays , Phenotype , Zea mays/genetics , Seasons , Genotype , Genome, Plant/genetics
14.
BMC Res Notes ; 16(1): 219, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37710302

ABSTRACT

OBJECTIVES: This release note describes the Maize GxE project datasets within the Genomes to Fields (G2F) Initiative. The Maize GxE project aims to understand genotype by environment (GxE) interactions and use the information collected to improve resource allocation efficiency and increase genotype predictability and stability, particularly in scenarios of variable environmental patterns. Hybrids and inbreds are evaluated across multiple environments and phenotypic, genotypic, environmental, and metadata information are made publicly available. DATA DESCRIPTION: The datasets include phenotypic data of the hybrids and inbreds evaluated in 30 locations across the US and one location in Germany in 2020 and 2021, soil and climatic measurements and metadata information for all environments (combination of year and location), ReadMe, and description files for each data type. A set of common hybrids is present in each environment to connect with previous evaluations. Each environment had a collaborator responsible for collecting and submitting the data, the GxE coordination team combined all the collected information and removed obvious erroneous data. Collaborators received the combined data to use, verify and declare that the data generated in their own environments was accurate. Combined data is released to the public with minimal filtering to maintain fidelity to the original data.


Subject(s)
Resource Allocation , Zea mays , Zea mays/genetics , Seasons , Genotype , Germany
15.
Methods Mol Biol ; 2539: 159-170, 2022.
Article in English | MEDLINE | ID: mdl-35895203

ABSTRACT

Phenomics has emerged as the technology of choice for understanding quantitative genetic variation in plant physiology and plant breeding. Phenomics has allowed for unmatched precision in exploring plant life cycles and physiological patterns. As new technologies are developed, it is still vital to follow best practices for designing and planning to be able to fully exploit any experimental results. Here we describe the basic - but sometimes overlooked - considerations of a phenomics experiment to help you maximize the value from the data collected: choosing population and location, accounting for sources of variation, establishing a timeline, and leveraging ground-truth measurements.


Subject(s)
Phenomics , Plant Breeding , Crops, Agricultural/genetics , Genomics/methods , Phenotype
16.
Front Genet ; 13: 819849, 2022.
Article in English | MEDLINE | ID: mdl-35368702

ABSTRACT

Global environmental changes with more extreme episodes of heat waves are major threats to agricultural productivity. Heat stress in spring affects the reproductive stage of maize, resulting in tassel blast, pollen abortion, poor pollination, reduced seed set, barren ears and ultimately yield loss. As an aneamophelous crop, maize has a propensity for pollen abortion under heat stress conditions. To overcome the existing challenges of heat stress and pollen abortion, this study utilized a broad genetic base of maize germplasm to identify superior alleles to be utilized in breeding programs. A panel of 375 inbred lines was morpho-physiologically screened under normal and heat stress conditions in two locations across two consecutive planting seasons, 2017 and 2018. The exposure of pollen to high temperature showed drastic decline in pollen germination percentage. The average pollen germination percentage (PGP) at 35 and 45°C was 40.3% and 9.7%, respectively, an average decline of 30.6%. A subset of 275 inbred lines were sequenced using tunable genotyping by sequencing, resulting in 170,098 single nucleotide polymorphisms (SNPs) after filtration. Genome wide association of PGP in a subset of 122 inbred lines resulted in ten SNPs associated with PGP35°C (p ≤ 10-5), nine with PGP45°C (p ≤ 10-6-10-8) and ten SNPs associated with PGP ratio (p ≤ 10-5). No SNPs were found to be in common across PGP traits. The number of favorable alleles possessed by each inbred line for PGP35°C, PGP45°C, and the PGP ratio ranged between 4 and 10, 3-13 and 5-13, respectively. In contrast, the number of negative alleles for these traits ranged between 2 and 8, 3-13 and 3-13, respectively. Genetic mapping of yield (adjusted weight per plant, AWP-1) and flowering time (anthesis-silking interval, ASI) in 275 lines revealed five common SNPs: three shared for AWP-1 between normal and heat stress conditions, one for ASI between conditions, and one SNP, CM007648.1-86615409, was associated with both ASI and AWP-1. Variety selection can be performed based on these favorable alleles for various traits. These marker trait associations identified in the diversity panel can be utilized in breeding programs to improve heat stress tolerance in maize.

17.
Gigascience ; 112022 08 23.
Article in English | MEDLINE | ID: mdl-35997208

ABSTRACT

Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density genetic marker data-18M markers-from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown in field trials across at least 7 US states and scored for 162 distinct trait data sets enabled the identification of of 2,154 suggestive marker-trait associations and 697 confident associations in the maize genome using a resampling-based genome-wide association strategy. The precision of individual marker-trait associations was estimated to be 3 genes based on a reference set of genes with known phenotypes. Examples were observed of both genetic loci associated with variation in diverse traits (e.g., above-ground and below-ground traits), as well as individual loci associated with the same or similar traits across diverse environments. Many significant signals are located near genes whose functions were previously entirely unknown or estimated purely via functional data on homologs. This study demonstrates the potential of mining community association panel data using new higher-density genetic marker sets combined with resampling-based genome-wide association tests to develop testable hypotheses about gene functions, identify potential pleiotropic effects of natural genetic variants, and study genotype-by-environment interaction.


Subject(s)
Genome-Wide Association Study , Zea mays , Genetic Markers , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays/genetics
18.
G3 (Bethesda) ; 11(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33585867

ABSTRACT

High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.


Subject(s)
Gene-Environment Interaction , Zea mays , Genotype , Models, Genetic , Phenotype , Plant Breeding
19.
Plant J ; 58(2): 275-86, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19170933

ABSTRACT

A paradox of plant hormone biology is how a single small molecule can affect a diverse array of growth and developmental processes. For instance, brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence and stress responses. BRs signal through the BES1/BZR1 (bri1-Ethylmethane Sulphonate suppressor 1/brassinazole-resistant 1) family of transcription factors, which regulate hundreds of target genes involved in this pathway, yet little is known of this transcriptional network. Through microarray and chromatin immunoprecipitation (ChIP) experiments, we identified a direct target gene of BES1, AtMYB30, which encodes an MYB family transcription factor. AtMYB30 null mutants display decreased BR responses and enhance the dwarf phenotype of a weak allele of the BR receptor mutant bri1. Many BR-regulated genes have reduced expression and/or hormone-induction in AtMYB30 mutants, indicating that AtMYB30 functions to promote expression of a subset of BR target genes. AtMYB30 and BES1 bind to a conserved MYB-binding site and E-box sequences, respectively, in the promoters of genes that are regulated by both BRs and AtMYB30. Finally, AtMYB30 and BES1 interact with each other both in vitro and in vivo. These results demonstrate that BES1 and AtMYB30 function cooperatively to promote BR target gene expression. Our results therefore establish a new mechanism by which AtMYB30, a direct target of BES1, functions to amplify BR signaling by helping BES1 activate downstream target genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Nuclear Proteins/metabolism , Plant Growth Regulators/metabolism , Steroids, Heterocyclic/metabolism , Transcription Factors/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Chromatin Immunoprecipitation , DNA-Binding Proteins , Gene Expression Regulation, Plant , Gene Knockout Techniques , Mutation , Nuclear Proteins/genetics , Oligonucleotide Array Sequence Analysis , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , RNA, Plant/genetics , Transcription Factors/genetics
20.
Front Big Data ; 2: 27, 2019.
Article in English | MEDLINE | ID: mdl-33693350

ABSTRACT

We consider multi-response and multi-task regression models, where the parameter matrix to be estimated is expected to have an unknown grouping structure. The groupings can be along tasks, or features, or both, the last one indicating a bi-cluster or "checkerboard" structure. Discovering this grouping structure along with parameter inference makes sense in several applications, such as multi-response Genome-Wide Association Studies (GWAS). By inferring this additional structure we can obtain valuable information on the underlying data mechanisms (e.g., relationships among genotypes and phenotypes in GWAS). In this paper, we propose two formulations to simultaneously learn the parameter matrix and its group structures, based on convex regularization penalties. We present optimization approaches to solve the resulting problems and provide numerical convergence guarantees. Extensive experiments demonstrate much better clustering quality compared to other methods, and our approaches are also validated on real datasets concerning phenotypes and genotypes of plant varieties.

SELECTION OF CITATIONS
SEARCH DETAIL