Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Comput Biol ; 16(10): e1008267, 2020 10.
Article in English | MEDLINE | ID: mdl-33048932

ABSTRACT

Neurodegenerative diseases such as Alzheimer's or Parkinson's are associated with the prion-like propagation and aggregation of toxic proteins. A long standing hypothesis that amyloid-beta drives Alzheimer's disease has proven the subject of contemporary controversy; leading to new research in both the role of tau protein and its interaction with amyloid-beta. Conversely, recent work in mathematical modeling has demonstrated the relevance of nonlinear reaction-diffusion type equations to capture essential features of the disease. Such approaches have been further simplified, to network-based models, and offer researchers a powerful set of computationally tractable tools with which to investigate neurodegenerative disease dynamics. Here, we propose a novel, coupled network-based model for a two-protein system that includes an enzymatic interaction term alongside a simple model of aggregate transneuronal damage. We apply this theoretical model to test the possible interactions between tau proteins and amyloid-beta and study the resulting coupled behavior between toxic protein clearance and proteopathic phenomenology. Our analysis reveals ways in which amyloid-beta and tau proteins may conspire with each other to enhance the nucleation and propagation of different diseases, thus shedding new light on the importance of protein clearance and protein interaction mechanisms in prion-like models of neurodegenerative disease.


Subject(s)
Amyloid beta-Peptides , Models, Biological , Neurodegenerative Diseases , tau Proteins , Aged , Aged, 80 and over , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Computational Biology , Female , Humans , Male , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , tau Proteins/chemistry , tau Proteins/metabolism
2.
Am J Med Genet A ; 179(9): 1826-1835, 2019 09.
Article in English | MEDLINE | ID: mdl-31313492

ABSTRACT

Prader-Willi syndrome (PWS) is a genomic imprinting disorder characterized by infantile hypotonia with a poor suck and failure to thrive, hypogenitalism/hypogonadism, behavior and cognitive problems, hormone deficiencies, hyperphagia, and obesity. The Stanford Binet and Wechsler (WAIS-R; WISC-III) intelligence (IQ) tests were administered on 103 individuals with PWS from two separate cohorts [University of California, Irvine (UCI) (N = 56) and Vanderbilt University (N = 47)] and clinical information obtained including growth hormone (GH) treatment, PWS molecular classes, weight and height. Significantly higher IQ scores (p < .02) were found representing the vocabulary section of the Stanford Binet test in the growth hormone (GH) treated group when compared with non-GH treatment in the pediatric-based UCI PWS cohort with a trend for stabilization of vocabulary IQ scores with age in the GH treated maternal disomy (UPD) 15 subject group. Significant differences (p = .05) were also found in the adult-based Vanderbilt PWS cohort with 15q11-q13 deletion subjects having lower Verbal IQ scores compared with UPD 15. No difference in body mass index was identified based on the PWS molecular class or genetic subtype. Medical care and response to treatment with growth hormone may influence intelligence impacted by PWS genetic subtypes and possibly age, but more studies are needed.


Subject(s)
Chromosomes, Human, Pair 15/genetics , Growth Hormone/administration & dosage , Prader-Willi Syndrome/drug therapy , Sequence Deletion/genetics , Adolescent , Adult , Body Mass Index , Child , Child, Preschool , Female , Humans , Intelligence/drug effects , Intelligence Tests , Male , Phenotype , Prader-Willi Syndrome/classification , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/pathology , Stanford-Binet Test , Wechsler Scales , Young Adult
3.
J Chem Phys ; 150(4): 044101, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30709269

ABSTRACT

We introduce tight upper bounds for a variety of integrals appearing in electronic structure theories. These include electronic interaction integrals involving any number of electrons and various integral kernels such as the ubiquitous electron repulsion integrals and the three- and four-electron integrals found in explicitly correlated methods. Our bounds are also applicable to the one-electron potential integrals that appear in great number in quantum mechanical (QM), mixed quantum and molecular mechanical (QM/MM), and semi-numerical methods. The bounds are based on a partitioning of the integration space into balls centered around electronic distributions and their complements. Such a partitioning leads directly to equations for rigorous extents, which we solve for shell pair distributions containing shells of Gaussian basis functions of arbitrary angular momentum. The extents are the first general rigorous formulation we are aware of, as previous definitions are based on the inverse distance operator 1/r12 and typically only rigorous for simple spherical Gaussians. We test our bounds for six different integral kernels found throughout quantum chemistry, including exponential, Gaussian, and complementary error function based forms. We compare to previously developed estimates on the basis of significant integral counts and their usage in both explicitly correlated second-order Møller-Plesset theory (MP2-F12) and density functional theory calculations employing screened Hartree-Fock exchange.

4.
J Chem Phys ; 151(18): 184104, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31731873

ABSTRACT

A generalization of the Schwarz bound employed to reduce the scaling of quantum-chemical calculations is introduced in the context of non-Hermitian methods employing complex-scaled basis functions. Non-Hermitian methods offer a treatment of molecular metastable states in terms of L2-integrable wave functions with complex energies, but until now, an efficient upper bound for the resulting electron-repulsion integrals has been unavailable due to the complications from non-Hermiticity. Our newly formulated bound allows us to inexpensively and rigorously estimate the sparsity in the complex-scaled two-electron integral tensor, providing the basis for efficient integral screening procedures. We have incorporated a screening algorithm based on the new Schwarz bound into the state-of-the-art complex basis function integral code by White, Head-Gordon, and McCurdy [J. Chem. Phys. 142, 054103 (2015)]. The effectiveness of the screening is demonstrated through non-Hermitian Hartree-Fock calculations of the static field ionization of the 2-pyridoxine 2-aminopyridine molecular complex.

5.
Phys Chem Chem Phys ; 20(38): 24807-24820, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30229769

ABSTRACT

To understand how substituents can be used to increase the quantum yield of photochemical electrocyclic ring-closing of the Z-hexa-1,3,5-triene (HT) photoswitch forming cyclohexadiene (CHD), we investigate the S1 photo dynamics of HT and its derivatives 2,5-dimethyl-HT (DMHT), 2-isopropyl-5-methyl-HT (2,5-IMHT), 1-isopropyl-4-methyl-HT (1,4-IMHT), and 2,5-diisopropyl-HT (DIHT) using time-dependent density functional theory surface hopping dynamics. We report detailed photoproduct distributions, formation mechanisms, branching ratios, and wavelength-dependent product quantum yields. Most products have been confirmed experimentally and include all-trans HT derivatives, cyclopropanes, cyclobutenes, cyclopentene, cyclohexadienes, and bicyclic compounds. Regarding CHD formation, we find that for the 2,5-substituted derivatives DMHT, 2,5-IMHT, and DIHT, the branching ratios increase with increasing size of the substituents. In contrast the branching ratios of the E/Z-isomerization decrease with increasing size of the substituents. Due to steric interactions, increasing the size of the substituents increases the amount of gZg rotamers in the ground state, which are prone to CHD formation and have lower E/Z-isomerization probability. Furthermore, we find [1,4], [1,5], and [1,6]-sigmatropic hydrogen shift reactions occurring at large percentages (5% to 15%); for sterical reasons these reactions stem from tZg conformers. DIHT shows the lowest percentage of side product formation among the 2,5-substituted molecules and highest CHD branching ratio; its CHD quantum yield can be increased up to more than 64%, by excitation of DIHT on the red tail of its absorption spectrum, whereas the Z/E-isomerization is reduced below 5% and side reactions practically vanish. This makes DIHT the best candidate for applications in molecular switches.

6.
Phys Chem Chem Phys ; 19(8): 5763-5777, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28105477

ABSTRACT

To investigate the role of tachysterol in the photophysical/photochemical regulation of vitamin D photosynthesis, we studied its electronic absorption properties and excited state dynamics using time-dependent density functional theory (TDDFT), second-order approximate coupled cluster theory (CC2), and non-adiabatic surface hopping molecular dynamics in the gas phase. In excellent agreement with experiments, the simulated electronic spectrum shows a broad absorption band with a remarkably higher extinction coefficient than the other vitamin D photoisomers provitamin D, lumisterol, and previtamin D. The broad band arises from the spectral overlap of four different ground state rotamers. After photoexcitation, the first excited singlet state (S1) decays with a lifetime of 882 fs. The S1 dynamics is characterized by a strong twisting of the central double bond. In 96% of all trajectories this is followed by unreactive relaxation to the ground state near a conical intersection. The double-bond twisting in the chemically unreactive trajectories induces a strong interconversion between the different rotamers. In 2.3% of the trajectories we observed [1,5]-sigmatropic hydrogen shift forming the partly deconjugated toxisterol D1. 1.4% previtamin D formation is observed via hula-twist double bond isomerization. In both reaction channels, we find a strong dependence between photoreactivity and dihedral angle conformation: hydrogen shift only occurs in cEc and cEt rotamers and double bond isomerization occurs mainly in cEc rotamers. Hence, our study confirms the previously formed hypothesis that cEc rotamers are more prone to previtamin D formation than other isomers. In addition, we also observe the formation of a cyclobutene-toxisterol in the hot ground state in 3 trajectories (0.7%). Due to its large extinction coefficient and mostly unreactive behavior, tachysterol acts mainly as a Sun shield suppressing previtamin D formation. Tachysterol shows stronger toxisterol formation than previtamin D and can thus be seen as the major degradation route of vitamin D. Absorption of low energy ultraviolet light by the cEc rotamer can lead to previtamin D formation. In addition, the cyclobutene-toxisterol, which possibly reacts thermally to previtamin D, is also preferably formed at long wavelengths. These two mechanisms are consistent with the wavelength dependent photochemistry found in experiments. Our study reinforces a recent hypothesis that tachysterol constitutes a source of previtamin D when only low energy ultraviolet light is available, as it is the case in winter or in the morning and evening hours of the day.


Subject(s)
Cholecalciferol/analogs & derivatives , Photosynthesis , Vitamin D/biosynthesis , Cholecalciferol/metabolism , Molecular Dynamics Simulation , Photochemical Processes
7.
J Chem Phys ; 147(14): 144101, 2017 Oct 14.
Article in English | MEDLINE | ID: mdl-29031251

ABSTRACT

We introduce both rigorous and non-rigorous distance-dependent integral estimates for four-center two-electron integrals derived from a distance-including Schwarz-type inequality. The estimates are even easier to implement than our so far most efficient distance-dependent estimates [S. A. Maurer et al., J. Chem. Phys. 136, 144107 (2012)] and, in addition, do not require well-separated charge-distributions. They are also applicable to a wide range of two-electron operators such as those found in explicitly correlated theories and in short-range hybrid density functionals. For two such operators with exponential distance decay [e-r12 and erfc(0.11⋅r12)/r12], the rigorous bound is shown to be much tighter than the standard Schwarz estimate with virtually no error penalty. The non-rigorous estimate gives results very close to an exact screening for these operators and for the long-range 1/r12 operator, with errors that are completely controllable through the integral screening threshold. In addition, we present an alternative form of our non-rigorous bound that is particularly well-suited for improving the PreLinK method [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013)] in the context of short-range exchange calculations.

8.
J Phys Chem A ; 120(15): 2320-9, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27018427

ABSTRACT

We have reinvestigated the excited state dynamics of cyclohexa-1,3-diene (CHD) with time-resolved photoelectron spectroscopy and fewest switches surface hopping molecular dynamics based on linear response time-dependent density functional theory after excitation to the lowest lying ππ* (1B) state. The combination of both theory and experiment revealed several new results: First, the dynamics progress on one single excited state surface. After an incubation time of 35 ± 10 fs on the excited state, the dynamics proceed to the ground state in an additional 60 ± 10 fs, either via a conrotatory ring-opening to hexatriene or back to the CHD ground state. Moreover, ring-opening predominantly occurs when the wavepacket crosses the region of strong nonadiabatic coupling with a positive velocity in the bond alternation coordinate. After 100 fs, trajectories remaining in the excited state must return to the CHD ground state. This extra time delay induces a revival of the photoelectron signal and is an experimental confirmation of the previously formulated model of two parallel reaction channels with distinct time constants. Finally, our simulations suggest that after the initially formed cis-Z-cis HT rotamer the trans-Z-trans isomer is formed, before the thermodynamical equilibrium of three possible rotamers is reached after 1 ps.

9.
J Virol ; 88(17): 9842-63, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24942570

ABSTRACT

UNLABELLED: Rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses that cause severe gastroenteritis in children. In addition to an error-prone genome replication mechanism, RVs can increase their genetic diversity by reassorting genes during host coinfection. Such exchanges allow RVs to acquire advantageous genes and adapt in the face of selective pressures. However, reassortment may also impose fitness costs if it unlinks genes/proteins that have accumulated compensatory, coadaptive mutations and that operate best when kept together. To better understand human RV evolutionary dynamics, we analyzed the genome sequences of 135 strains (genotype G1/G3/G4-P[8]-I1-C1-R1-A1-N1-T1-E1-H1) that were collected at a single location in Washington, DC, during the years 1974 to 1991. Intragenotypic phylogenetic trees were constructed for each viral gene using the nucleotide sequences, thereby defining novel allele level gene constellations (GCs) and illuminating putative reassortment events. The results showed that RVs with distinct GCs cocirculated during the vast majority of the collection years and that some of these GCs persisted in the community unchanged by reassortment. To investigate the influence of protein coadaptation on GC maintenance, we performed a mutual information-based analysis of the concatenated amino acid sequences and identified an extensive covariance network. Unexpectedly, amino acid covariation was highest between VP4 and VP2, which are structural components of the RV virion that are not thought to directly interact. These results suggest that GCs may be influenced by the selective constraints placed on functionally coadapted, albeit noninteracting, viral proteins. This work raises important questions about mutation-reassortment interplay and its impact on human RV evolution. IMPORTANCE: Rotaviruses are devastating human pathogens that cause severe diarrhea and kill >450,000 children each year. The virus can evolve by accumulating mutations and by acquiring new genes from other strains via a process called reassortment. However, little is known about the relationship between mutation accumulation and gene reassortment for rotaviruses and how it impacts viral evolution. In this study, we analyzed the genome sequences of human strains found in clinical fecal specimens that were collected at a single hospital over an 18-year time span. We found that many rotaviruses did not reassort their genes but instead maintained them as specific sets (i.e., constellations). By analyzing the encoded proteins, we discovered concurrent amino acid changes among them, which suggests that they are functionally coadapted to operate best when kept together. This study increases our understanding of how rotaviruses evolve over time in the human population.


Subject(s)
Evolution, Molecular , Rotavirus/genetics , Rotavirus/isolation & purification , Viral Proteins/genetics , Adaptation, Biological , Child, Preschool , Cluster Analysis , District of Columbia , Genome, Viral , Humans , Infant , Molecular Sequence Data , Phylogeny , Rotavirus/classification , Sequence Analysis, DNA
10.
Phys Chem Chem Phys ; 16(24): 12510-20, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24830880

ABSTRACT

Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.

11.
J Chem Theory Comput ; 20(9): 3706-3718, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38626443

ABSTRACT

We present a linear scaling atomic orbital based algorithm for the computation of the most expensive exchange-type RI-MP2-F12 term by employing numerical quadrature in combination with CABS-RI to avoid six-center-three-electron integrals. Furthermore, a robust distance-dependent integral screening scheme, based on integral partition bounds [Thompson, T. H.; Ochsenfeld, C. J. Chem. Phys. 2019, 150, 044101], is used to drastically reduce the number of the required three-center-one-electron integrals substantially. The accuracy of our numerical quadrature/CABS-RI approach and the corresponding integral screening is thoroughly assessed for interaction and isomerization energies across a variety of numerical integration grids. Our method outperforms the standard density fitting/CABS-RI approach with errors below 1 µEh even for small grid sizes and moderate screening thresholds. The choice of the grid size and screening threshold allows us to tailor our ansatz to a desired accuracy and computational efficiency. We showcase the approach's effectiveness for the chemically relevant system valinomycin, employing a triple-ζ F12 basis set combination (C54H90N6O18, 5757 AO basis functions, 10,266 CABS basis functions, 735,783 grid points). In this context, our ansatz achieves higher accuracy combined with a 135× speedup compared to the classical density fitting based variant, requiring notably less computation time than the corresponding RI-MP2 calculation. Additionally, we demonstrate near-linear scaling through calculations on linear alkanes. We achieved an 817-fold acceleration for C80H162 and an extrapolated 28,765-fold acceleration for C200H402, resulting in a substantially reduced computational time for the latter─from 229 days to just 11.5 min. Our ansatz may also be adapted to the remaining MP2-F12 terms, which will be the subject of future work.

12.
J Appl Res Intellect Disabil ; 26(2): 81-107, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23404617

ABSTRACT

For three decades after Leo Kanner's first clinical description, research progress in understanding and treating autism was minimal but since the late 1960s the growth of autism discoveries has been exponential, with a remarkable number of new findings published over the past two decades, in particular. These advances were made possible first by the discovery and dissemination of early intensive behavioural intervention (EIBI) for young children with autism that created the impetus for earlier accurate diagnosis. Other factors influencing the rapid growth in autism research were the first accepted diagnostic test for autism, the Autism Diagnostic Interview and Observation Schedule (ADI and ADOS). Developments in brain imaging and genetic technology combined to create a fuller understanding of the heterogeneity of autism, its multiple aetiologies, very early onset and course, and strategies for treatment. For a significant proportion of children with autism, it appears EIBI may be capable of promoting brain connectivity in specific cerebral areas, which is one of autism's underlying challenges. Disagreements about the most appropriate early intervention approach between developmental and behavioural psychologists have been unproductive and not contributed to advancing the field. Naturalistic behavioural and structured discrete trial methods are being integrated with developmental strategies with promising outcomes. Over these past 30 years, young people with autism have gone from receiving essentially no proactive treatment, resulting in lives languishing in institutions, to today, when half of children receiving EIBI treatment subsequently participate in regular classrooms alongside their peers. The future has entirely changed for young people with autism. Autism has become an eminently treatable condition. The time is overdue to set aside philosophical quarrels regarding theories of child development and apply what we know for the benefit of children with autism and their families.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/therapy , Autistic Disorder/genetics , Behavior Therapy/methods , Child Health Services , Child, Preschool , Early Diagnosis , Early Intervention, Educational , Humans , Research
13.
J Phys Chem Lett ; 14(21): 5061-5068, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37227143

ABSTRACT

We present a method to simulate ultrafast pump-probe time-resolved circular dichroism (TRCD) spectra based on time-dependent density functional theory trajectory surface hopping. The method is applied to simulate the TRCD spectrum along the photoinduced ring-opening of provitamin D. Simulations reveal that the initial decay of the signal is due to excited state relaxation, forming the rotationally flexible previtamin D. We further show that oscillations in the experimental TRCD spectrum arise from isomerizations between previtamin D rotamers with different chirality, which are associated with the helical conformation of the triene unit. We give a detailed description of the formation dynamics of different rotamers, playing a key role in the natural regulation of vitamin D photosynthesis. Going beyond the sole extraction of decay rates, simulations greatly increase the amount of information that can be retrieved from ultrafast TRCD, making it a sensitive tool to unravel details in the subpicosecond dynamics of photoinduced chirality changes.

14.
ArXiv ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090238

ABSTRACT

We present a method to simulate ultrafast pump-probe time-resolved circular dichroism (TRCD) spectra based on time-dependent density functional theory trajectory surface hopping. The method is applied to simulate the TRCD spectrum along the photoinduced ring-opening of provitamin D. Simulations reveal that the initial decay of the signal is due to excited state relaxation, forming the rotationally flexible previtamin D. We further show that oscillations in the experimental TRCD spectrum arise from isomerizations between previtamin D rotamers with different chirality, which are associated with the helical conformation of the triene unit. We give a detailed description of the formation dynamics of different rotamers, playing a key role in the natural regulation vitamin D photosynthesis. Going beyond the sole extraction of decay rates, simulations greatly increase the amount of information that can be retrieved from ultrafast TRCD, making it a sensitive tool to unravel details in the sub-picosecond dynamics of photoinduced chirality changes.

15.
ACS Appl Mater Interfaces ; 15(10): 13689-13699, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36862826

ABSTRACT

Temperature-assisted densification methods are typically used in oxide-based solid-state batteries to suppress resistive interfaces. However, chemical reactivity among the different cathode components (which include a catholyte, the conducting additive, and the electroactive material) still represents a major challenge and processing parameters need thus to be carefully selected. In this study, we evaluate the impact of temperature and heating atmosphere in the LiNi0.6Mn0.2Co0.2O2 (NMC), Li1+xAlxTi2-xP3O12 (LATP), and Ketjenblack (KB) system. A rationale of the chemical reactions between components is proposed from the combination of bulk and surface techniques and overall involves a cation redistribution in the NMC cathode material that is accompanied by the loss of lithium and oxygen from the lattice enhanced by LATP and KB, which act as lithium and oxygen sinks. The final result is the formation of several degradation products, starting at the surface, that lead to a rapid capacity decay above 400 °C. Both the reaction mechanism and threshold temperature depend on the heating atmosphere, with the air atmosphere being more favorable compared to oxygen or any other inert gases.

16.
Sci Rep ; 13(1): 15204, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709850

ABSTRACT

Chronic positive energy balance has surged among societies worldwide due to increasing dietary energy intake and decreasing physical activity, a phenomenon called the energy balance transition. Here, we investigate the effects of this transition on bone mass and strength. We focus on the Indigenous peoples of New Mexico in the United States, a rare case of a group for which data can be compared between individuals living before and after the start of the transition. We show that since the transition began, bone strength in the leg has markedly decreased, even though bone mass has apparently increased. Decreased bone strength, coupled with a high prevalence of obesity, has resulted in many people today having weaker bones that must sustain excessively heavy loads, potentially heightening their risk of a bone fracture. These findings may provide insight into more widespread upward trends in bone fragility and fracture risk among societies undergoing the energy balance transition.


Subject(s)
Fractures, Bone , Humans , Bone Density , Energy Intake , Exercise , Fractures, Bone/epidemiology
17.
ACS Omega ; 8(40): 36753-36763, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841118

ABSTRACT

This work introduces a polymeric backbone eutectogel (P-ETG) hybrid solid-state electrolyte with an N-isopropylacrylamide (NIPAM) backbone for high-energy lithium-ion batteries (LIBs). The NIPAM-based P-ETG is (electro)chemically compatible with commercially relevant positive electrode materials such as the nickel-rich layered oxide LiNi0.6Mn0.2Co0.2O2 (NMC622). The chemical compatibility was demonstrated through (physico)chemical characterization methods. The nonexistence (within detection limits) of interfacial reactions between the electrolyte and the positive electrode, the unchanged bulk crystallographic composition, and the absence of transition metal ions leaching from the positive electrode in contact with the electrolyte were demonstrated by Fourier transform infrared spectroscopy, powder X-ray diffraction, and elemental analysis, respectively. Moreover, the NIPAM-based P-ETG demonstrates a wide electrochemical stability window (1.5-5.0 V vs Li+/Li) and a reasonably high ionic conductivity at room temperature (0.82 mS cm-1). The electrochemical compatibility of a high-potential NMC622-containing positive electrode and the P-ETG is further demonstrated in Li|P-ETG|NMC622 cells, which deliver a discharge capacity of 134, 110, and 97 mAh g-1 at C/5, C/2, and 1C, respectively, after 90 cycles. The Coulombic efficiency is >95% at C/5, C/2, and 1C. Hence, gaining scientific insights into the compatibility of the electrolytes with positive electrode materials that are relevant to the commercial market, like NMC622, is important because this requires going beyond the electrolyte design itself, which is essential to their practical applications.

18.
Plant Mol Biol ; 79(4-5): 393-411, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22592779

ABSTRACT

Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 µM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.


Subject(s)
Carbon-Carbon Lyases/genetics , Lavandula/enzymology , Lavandula/genetics , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/metabolism , Cloning, Molecular , Cyclohexanols/metabolism , DNA, Plant/genetics , Eucalyptol , Expressed Sequence Tags , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Gene Library , Genome, Plant , Lavandula/growth & development , Metabolic Networks and Pathways , Molecular Sequence Data , Monoterpenes/metabolism , Oils, Volatile/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
19.
Behav Anal ; 35(2): 197-208, 2012.
Article in English | MEDLINE | ID: mdl-23450040

ABSTRACT

Joseph V. Brady (1922-2011) created behavior-analytic neuroscience and the analytic framework for understanding how the external and internal neurobiological environments and mechanisms interact. Brady's approach offered synthesis as well as analysis. He embraced Findley's approach to constructing multioperant behavioral repertoires that found their way into designing environments for astronauts as well as studying drug effects on human social behavior in microenvironments. Brady created translational neurobehavioral science before such a concept existed. One of his most lasting contributions was developing a framework for ethical decision making to protect the rights of the people who participate in scientific research.

20.
J Am Chem Soc ; 133(25): 9855-62, 2011 Jun 29.
Article in English | MEDLINE | ID: mdl-21615158

ABSTRACT

Membrane proteins comprise a third of the human genome, yet present challenging targets for reverse chemical genetics. For example, although implicated in numerous diseases including multiple myeloma, the membrane protein caveolin-1 appears to offer a poor target for the discovery of synthetic ligands due to its largely unknown structure and insolubility. To break this impasse and identify new classes of caveolae controlling lead compounds, we applied phage-based, reverse chemical genetics for the discovery of caveolin-1 ligands derived from the anti-HIV therapeutic T20. Substitution of homologous residues into the T20 sequence used a process analogous to medicinal chemistry for the affinity maturation to bind caveolin. The resultant caveolin-1 ligands bound with >1000-fold higher affinity than wild-type T20. Two types of ELISAs and isothermal titration calorimetry (ITC) measurements demonstrated high affinity binding to caveolin by the T20 variants with K(d) values in the 150 nM range. Microscopy experiments with the highest affinity caveolin ligands confirmed colocalization of the ligands with endogenous caveolin in NIH 3T3 cells. The results establish the foundation for targeting caveolin and caveolae formation in living cells.


Subject(s)
Caveolin 1/metabolism , Directed Molecular Evolution/methods , Drug Discovery/methods , 3T3 Cells , Animals , Caveolae , Caveolin 1/antagonists & inhibitors , Enfuvirtide , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/pharmacology , HIV Fusion Inhibitors , Humans , Ligands , Membrane Proteins , Mice , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL