ABSTRACT
Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis.
Subject(s)
Drug Hypersensitivity , Drug-Related Side Effects and Adverse Reactions , Alleles , Drug-Related Side Effects and Adverse Reactions/genetics , HLA Antigens/genetics , Humans , PharmacogeneticsABSTRACT
Elevations in hepatic enzymes were detected in several trial patients exposed to the Alzheimer's drug atabecestat, which resulted in termination of the drug development program. Characterization of hepatic T-lymphocyte infiltrates and diaminothiazine (DIAT) metabolite-responsive, human leukocyte antigen (HLA)-DR-restricted, CD4+ T-lymphocytes in the blood of patients confirmed an immune pathogenesis. Patients with immune-mediated liver injury expressed a restricted panel of HLA-DRB1 alleles including HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01. Thus, the objectives of this study were to (i) generate DIAT-responsive T-cell clones from HLA-genotyped drug-naive donors, (ii) characterize pathways of DIAT-specific T-cell activation, and (iii) assess HLA allele restriction of the DIAT-specific T-cell response. Sixteen drug-naive donors expressing the HLA-DR molecules outlined above were recruited, and T-cell clones were generated. Cellular phenotype, function, and HLA-allele restriction were assessed using culture assays. Peptides displayed by HLA class II molecules in the presence and absence of atabecestat were analyzed by mass spectrometry. Several DIAT-responsive CD4+ clones, displaying no reactivity toward the parent drug, were successfully generated from donors expressing HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 but not from other donors expressing other HLA-DRB1 alleles. T-cell clones were activated following direct binding of DIAT to HLA-DR proteins expressed on the surface of antigen presenting cells. DIAT binding did not alter the HLA-DRB1 peptide binding repertoire, indicative of a binding interaction with the HLA-associated peptide rather than with the HLA protein itself. DIAT-specific T-cell responses displayed HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 restriction. These data demonstrate that DIAT displays a degree of selectivity toward HLA protein and associated peptides, with expression of certain alleles increasing and that of others decreasing, the likelihood that a drug-specific T-cell response develops.
Subject(s)
Alleles , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolismABSTRACT
Carbamazepine (CBZ) is an aromatic anticonvulsant known to cause drug hypersensitivity reactions, which range in severity from relatively mild maculopapular exanthema to potentially fatal Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN). These reactions are known to be associated with human leukocyte antigen (HLA) class I alleles, and CBZ interacts preferentially with the related HLA proteins to activate CD8+ T-cells. This study aimed to evaluate the contribution of HLA class II in the effector mechanism(s) of CBZ hypersensitivity. CBZ-specific T-cells clones were generated from two healthy donors and two hypersensitive patients with high-risk HLA class I markers. Phenotype, function, HLA allele restriction, response pathways, and cross-reactivity of CBZ-specific T-cells were assessed using flow cytometry, proliferation analysis, enzyme-linked immunosorbent spot, and enzyme-linked immunosorbent assay. The association between HLA class II allele restriction and CBZ hypersensitivity was reviewed using Allele Frequency Net Database. Forty-four polyclonal CD4+ CBZ-specific T-cell clones were generated and found to be restricted to HLA-DR, particularly HLA-DRB1*07:01. This CD4+-mediated response proceeded through a direct pharmacological interaction between CBZ and HLA-DR molecules. Similar to the CD8+ response, CBZ-stimulated CD4+ clones secreted granulysin, a key mediator of SJS-TEN. Our database review revealed an association between HLA-DRB1*07:01 and CBZ-induced SJS-TEN. These findings implicate HLA class II antigen presentation as an additional pathogenic factor for CBZ hypersensitivity reactions. Both HLA class II molecules and drug-responsive CD4+ T-cells should be evaluated further to gain better insights into the pathogenesis of drug hypersensitivity reactions.
Subject(s)
Drug Hypersensitivity , Stevens-Johnson Syndrome , Humans , CD8-Positive T-Lymphocytes , HLA-DRB1 Chains/genetics , Carbamazepine/adverse effects , Anticonvulsants/adverse effects , Drug Hypersensitivity/genetics , HLA Antigens , Stevens-Johnson Syndrome/genetics , CD4-Positive T-Lymphocytes , HLA-B AntigensABSTRACT
BACKGROUND: Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS: Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS: CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION: The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.
Subject(s)
Pharmaceutical Preparations , T-Lymphocytes , CD4-Positive T-Lymphocytes , Clone Cells , Humans , Leukocytes, Mononuclear , Liver , Lymphocyte Activation , Pyridines , ThiazinesABSTRACT
BACKGROUND: Abacavir is associated with hypersensitivity reactions in individuals positive for the HLA-B*57:01 allele. The drug binds within the peptide binding groove of HLA-B*57:01 altering peptides displayed on the cell surface. Presentation of these HLA-abacavir-peptide complexes to T-cells is hypothesized to trigger a CD8+ T-cell response underpinning the hypersensitivity. Thus, the aim of this study was to explore the relationship between the structure of abacavir with HLA-B*57:01 binding and the CD8+ T-cell activation. METHODS: Seventeen abacavir analogues were synthesized and cytokine secretion from abacavir/abacavir analogue-responsive CD8+ T-cell clones was measured using IFN-γ ELIspot. In silico docking studies were undertaken to assess the predicted binding poses of the abacavir analogues within the HLA-B*57:01 peptide binding groove. In parallel, the effect of selected abacavir analogues on the repertoire of self-peptides presented by cellular HLA-B*57:01 was characterized using mass spectrometry. RESULTS: Abacavir and ten analogues stimulated CD8+ T-cell IFN-γ release. Molecular docking of analogues that retained antiviral activity demonstrated a relationship between predicted HLA-B*57:01 binding orientations and the ability to induce a T-cell response. Analogues that stimulated T-cells displayed a perturbation of the natural peptides displayed by HLA-B*57:01. The antigen-specific CD8+ T-cell response was dependent on the enantiomeric form of abacavir at both cyclopropyl and cyclopentyl regions. CONCLUSION: Alteration of the chemical constitution of abacavir generates analogues that retain a degree of pharmacological activity, but have variable ability to activate T-cells. Modelling and immunopeptidome analysis delineate how drug HLA-B*57:01 binding and peptide display by antigen presenting cells relate to the activation of CD8+ T-cells.
Subject(s)
CD8-Positive T-Lymphocytes , Drug Hypersensitivity , Dideoxynucleosides , HLA-B Antigens/genetics , Humans , Molecular Docking Simulation , Structure-Activity RelationshipABSTRACT
Drug hypersensitivity reactions adversely affect treatment outcome, increase the length of patients' hospitalization, and limit the prescription options available to physicians. In addition, late stage drug attrition and the withdrawal of licensed drugs cost the pharmaceutical industry billions of dollars. This significantly increases the overall cost of drug development and by extension the price of licensed drugs. Drug hypersensitivity reactions are characterized by a delayed onset, and reactions tend to be more serious upon re-exposure. The role of drug-specific T-cells in the pathogenesis of drug hypersensitivity reactions and definition of the nature of the binding interaction of drugs with HLA and T-cell receptors continues to be the focus of intensive research, primarily because susceptibility is associated with expression of one or a small number of HLA alleles. This review critically examines the mechanisms of T-cell activation by drugs. Specific examples of drugs that activate T-cells via the hapten, the pharmacological interaction with immune receptors and the altered self-peptide repertoire pathways, are discussed. Furthermore, the impacts of drug metabolism, drug-protein adduct formation, and immune regulation on the development of drug antigen-responsive T-cells are highlighted. The knowledge gained from understanding the pathways of T-cell activation and susceptibility factors for drug hypersensitivity will provide the building blocks for the development of predictive in vitro assays that will prevent or help to minimize the incidence of these reactions in clinic.