Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS One ; 19(7): e0306532, 2024.
Article in English | MEDLINE | ID: mdl-38968319

ABSTRACT

This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA's fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Swine Diseases/virology , Swine Diseases/diagnosis , Retrospective Studies , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Gastroenteritis, Transmissible, of Swine/epidemiology , Polymerase Chain Reaction/methods , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , United States/epidemiology
2.
J Vet Diagn Invest ; 33(3): 457-468, 2021 May.
Article in English | MEDLINE | ID: mdl-33739188

ABSTRACT

Every day, thousands of samples from diverse populations of animals are submitted to veterinary diagnostic laboratories (VDLs) for testing. Each VDL has its own laboratory information management system (LIMS), with processes and procedures to capture submission information, perform laboratory tests, define the boundaries of test results (i.e., positive or negative), and report results, in addition to internal business and accounting applications. Enormous quantities of data are accumulated and stored within VDL LIMSs. There is a need for platforms that allow VDLs to exchange and share portions of laboratory data using standardized, reliable, and sustainable information technology processes. Here we report concepts and applications for standardization and aggregation of data from swine submissions to multiple VDLs to detect and monitor porcine enteric coronaviruses by RT-PCR. Oral fluids, feces, and fecal swabs were the specimens submitted most frequently for enteric coronavirus testing. Statistical algorithms were used successfully to scan and monitor the overall and state-specific percentage of positive submissions. Major findings revealed a consistently recurrent seasonal pattern, with the highest percentage of positive submissions detected during December-February for porcine epidemic diarrhea virus, porcine deltacoronavirus, and transmissible gastroenteritis virus (TGEV). After 2014, very few submissions tested positive for TGEV. Monitoring VDL data proactively has the potential to signal and alert stakeholders early of significant changes from expected detection. We demonstrate the importance of, and applications for, data organized and aggregated by using LOINC and SNOMED CTs, as well as the use of customized messaging to allow inter-VDL exchange of information.


Subject(s)
Coronaviridae Infections/veterinary , Coronaviridae/isolation & purification , Laboratories/standards , Swine Diseases/virology , Animals , COVID-19 Testing/veterinary , Coronaviridae Infections/diagnosis , Coronaviridae Infections/virology , Disease Outbreaks , Feces/virology , Reference Standards , Seasons , Swine , Swine Diseases/diagnosis
3.
J Vet Diagn Invest ; 32(3): 394-400, 2020 May.
Article in English | MEDLINE | ID: mdl-32274974

ABSTRACT

We developed a model to predict the cyclic pattern of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by reverse-transcription real-time PCR (RT-rtPCR) from 4 major swine-centric veterinary diagnostic laboratories (VDLs) in the United States and to use historical data to forecast the upcoming year's weekly percentage of positive submissions and issue outbreak signals when the pattern of detection was not as expected. Standardized submission data and test results were used. Historical data (2015-2017) composed of the weekly percentage of PCR-positive submissions were used to fit a cyclic robust regression model. The findings were used to forecast the expected weekly percentage of PCR-positive submissions, with a 95% confidence interval (CI), for 2018. During 2018, the proportion of PRRSV-positive submissions crossed 95% CI boundaries at week 2, 14-25, and 48. The relatively higher detection on week 2 and 48 were mostly from submissions containing samples from wean-to-market pigs, and for week 14-25 originated mostly from samples from adult/sow farms. There was a recurring yearly pattern of detection, wherein an increased proportion of PRRSV RNA detection in submissions originating from wean-to-finish farms was followed by increased detection in samples from adult/sow farms. Results from the model described herein confirm the seasonal cyclic pattern of PRRSV detection using test results consolidated from 4 VDLs. Wave crests occurred consistently during winter, and wave troughs occurred consistently during the summer months. Our model was able to correctly identify statistically significant outbreak signals in PRRSV RNA detection at 3 instances during 2018.


Subject(s)
Disease Outbreaks/veterinary , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Polymerase Chain Reaction/veterinary , Porcine Reproductive and Respiratory Syndrome/virology , RNA, Viral/analysis , Seasons , Swine , United States/epidemiology
4.
PLoS One ; 14(10): e0223544, 2019.
Article in English | MEDLINE | ID: mdl-31618236

ABSTRACT

This project investigates the macroepidemiological aspects of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by veterinary diagnostic laboratories (VDLs) for the period 2007 through 2018. Standardized submission data and PRRSV real-time reverse-transcriptase polymerase chain reaction (RT-qPCR) test results from porcine samples were retrieved from four VDLs representing 95% of all swine samples tested in NAHLN laboratories in the US. Anonymized data were retrieved and organized at the case level using SAS (SAS® Version 9.4, SAS® Institute, Inc., Cary, NC) with the use of PROC DATA, PROC MERGE, and PROC SQL scripts. The final aggregated and anonymized dataset comprised of 547,873 unique cases was uploaded to Power Business Intelligence-Power BI® (Microsoft Corporation, Redmond, Washington) to construct dynamic charts. The number of cases tested for PRRSV doubled from 2010 to 2018, with that increase mainly driven by samples typically used for monitoring purposes rather than diagnosis of disease. Apparent seasonal trends for the frequency of PRRSV detection were consistently observed with a higher percentage of positive cases occurring during fall or winter months and lower during summer months, perhaps due to increased testing associated with well-known seasonal occurrence of swine respiratory disease. PRRSV type 2, also known as North American genotype, accounted for 94.76% of all positive cases and was distributed across the US. PRRSV type 1, also known as European genotype, was geographically restricted and accounted for 2.15% of all positive cases. Co-detection of both strains accounted for 3.09% of the positive cases. Both oral fluid and processing fluid samples, had a rapid increase in the number of submissions soon after they were described in 2008 and 2017, respectively, suggesting rapid adoption of these specimens by the US swine industry for PRRSV monitoring in swine populations. As part of this project, a bio-informatics tool defined as Swine Disease Reporting System (SDRS) was developed. This tool has real-time capability to inform the US swine industry on the macroepidemiological aspects of PRRSV detection, and is easily adaptable for other analytes relevant to the swine industry.


Subject(s)
Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus , Animals , Clinical Laboratory Services , Geography, Medical , Laboratories, Hospital , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine respiratory and reproductive syndrome virus/classification , Porcine respiratory and reproductive syndrome virus/genetics , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Swine
5.
J Vet Diagn Invest ; 29(2): 169-175, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28176609

ABSTRACT

The incursion of highly pathogenic avian influenza (HPAI) into the United States during 2014 resulted in an unprecedented foreign animal disease (FAD) event; 232 outbreaks were reported from 21 states. The disease affected 49.6 million birds and resulted in economic losses of $950 million. Minnesota is the largest turkey-producing state, accounting for 18% of U.S. turkey production. Areas with concentrated numbers of turkeys in Minnesota were the epicenter of the outbreak. The first case was presumptively diagnosed in the last week of February 2015 at the Minnesota Veterinary Diagnostic Laboratory (MVDL) and confirmed as HPAI H5N2 at the National Veterinary Services Laboratories on March 4, 2015. A total of 110 farms were affected in Minnesota, and the MVDL tested >17,000 samples from March to July 2015. Normal service was maintained to other clients of the laboratory during this major FAD event, but challenges were encountered with communications, staff burnout and fatigue, training requirements of volunteer technical staff, test kit validation, and management of specific pathogen-free egg requirements.


Subject(s)
Disease Outbreaks/veterinary , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza in Birds/epidemiology , Turkeys , Animals , Influenza in Birds/virology , Laboratories/organization & administration , Minnesota/epidemiology , Specific Pathogen-Free Organisms , Veterinary Medicine
SELECTION OF CITATIONS
SEARCH DETAIL