Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Cell Physiol ; 327(1): C48-C64, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38708522

ABSTRACT

Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-ß signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSCs with the TGF-ß inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-ß signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice.NEW & NOTEWORTHY A Na/K-ATPase α1 caveolin-binding motif regulates adipogenesis. Mutation of this binding motif in the mouse leads to reduced fat with increased extracellular matrix production and inflammation. RNA-seq analysis and pharmacological interventions in human iPSC-derived adipocytes revealed that TGF-ß signal, rather than Na/K-ATPase-mediated ion transport, is a key mediator of NKA regulation of adipogenesis.


Subject(s)
Adipocytes , Adipogenesis , Caveolin 1 , Induced Pluripotent Stem Cells , Sodium-Potassium-Exchanging ATPase , Adipogenesis/genetics , Animals , Caveolin 1/metabolism , Caveolin 1/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Humans , Mice , Adipocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Signal Transduction , Cell Differentiation , Male , Extracellular Matrix/metabolism , Amino Acid Motifs , Mice, Inbred C57BL
2.
Environ Microbiol ; 26(1): e16577, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38183371

ABSTRACT

Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.


Subject(s)
Environmental Pollutants , Oryza , Phenanthrenes , Soil Pollutants , Sphingomonas , Cadmium/metabolism , Oryza/metabolism , Environmental Pollutants/metabolism , Sphingomonas/genetics , Sphingomonas/metabolism , Proteomics , Soil Pollutants/metabolism , Phenanthrenes/metabolism , Soil , Rhizosphere
3.
Plant Cell Environ ; 47(1): 259-277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691629

ABSTRACT

Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.


Subject(s)
Glycine max , Phytic Acid , Glycine max/metabolism , Glycosylation , Phytic Acid/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Phosphorus/metabolism , Soil
4.
Plant Cell Environ ; 47(4): 1041-1052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37997205

ABSTRACT

In arbuscular mycorrhizal (AM) symbiosis, sugars in root cortical cells could be exported as glucose or sucrose into peri-arbuscular space for use by AM fungi. However, no sugar transporter has been identified to be involved in sucrose export. An AM-inducible SWEET transporter, GmSWEET6, was functionally characterised in soybean, and its role in AM symbiosis was investigated via transgenic plants. The expression of GmSWEET6 was enhanced by inoculation with the cooperative fungal strain in both leaves and roots. Heterologous expression in a yeast mutant showed that GmSWEET6 mainly transported sucrose. Transgenic plants overexpressing GmSWEET6 increased sucrose concentration in root exudates. Overexpression or knockdown of GmSWEET6 decreased plant dry weight, P content, and sugar concentrations in non-mycorrhizal plants, which were partly recovered in mycorrhizal plants. Intriguingly, overexpression of GmSWEET6 increased root P content and decreased the percentage of degraded arbuscules, while knockdown of GmSWEET6 increased root sugar concentrations in RNAi2 plants and the percentage of degraded arbuscules in RNAi1 plants compared with wild-type plants when inoculated with AM fungi. These results in combination with subcellular localisation of GmSWEET6 to peri-arbuscular membranes strongly suggest that GmSWEET6 is required for AM symbiosis by mediating sucrose efflux towards fungi.


Subject(s)
Mycorrhizae , Symbiosis , Glycine max , Mycorrhizae/metabolism , Fungi , Plants, Genetically Modified/metabolism , Glucose/metabolism , Sucrose/metabolism , Plant Roots/metabolism
5.
Plant Cell Environ ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963088

ABSTRACT

The regulation of legume-rhizobia symbiosis by microorganisms has obtained considerable interest in recent research, particularly in the common rhizobacteria Bacillus. However, few studies have provided detailed explanations regarding the regulatory mechanisms involved. Here, we investigated the effects of Bacillus (Bac.B) on Bradyrhizobium-soybean (Glycine max) symbiosis and elucidated the underlying ecological mechanisms. We found that two Bradyrhizobium strains (i.e. Bra.Q2 and Bra.D) isolated from nodules significantly promoted nitrogen (N) efficiency of soybean via facilitating nodule formation, thereby enhanced plant growth and yield. However, the intrusion of Bac.B caused a reverse shift in the synergistic efficiency of N2 fixation in the soybean-Bradyrhizobium symbiosis. Biofilm formation and naringenin may be importantin suppression of Bra.Q2 growth regulated by Bac.B. In addition, transcriptome and microbiome analyses revealed that Bra.Q2 and Bac.B might interact to regulateN transport and assimilation, thus influence the bacterial composition related to plant N nutrition in nodules. Also, the metabolisms of secondary metabolites and hormones associated with plant-microbe interaction and growth regulation were modulated by Bra.Q2 and Bac.B coinoculation. Collectively, we demonstrate that Bacillus negatively affects Bradyrhizobium-soybean symbiosis and modulate microbial interactions in the nodule. Our findings highlight a novel Bacillus-based regulation to improve N efficiency and sustainable agricultural development.

6.
Inj Prev ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768979

ABSTRACT

BACKGROUND: Practical interventions of fall prevention are challenging for infants and toddlers. This study aimed to explore specific details of falls that occurred at home for kids 0-3 years old using key information from social media platforms, which provided abundant data sources for fall events. METHODS: We used internet-based search techniques to collect fall events information from 2013 to 2023. The search was restricted and implemented between 1 and 12 April 2023. Online platforms included Baidu, Weibo, WeChat, TikTok, Toutiao and Little Red Book. A qualitative descriptive approach was used to analyse the fall events and major factors, including the fall event time, child age, environmental factors and behavioural characteristics of children and caregivers. RESULTS: We identified 1005 fall injury cases among infants and toddlers. Fall mechanisms included falls from household furniture (71.2%), falls from height (21.4%) and falls on the same level (7.4%). Environmental risk factors mainly consisted of not using or installing bed rails incorrectly, a gap between beds, unstable furniture, slippery ground and windows without guardrails. Behavioural factors included caregivers leaving a child alone, lapsed attention, turning around to retrieve something, misusing baby products, inadequately holding the child and falling asleep with children. Child behavioural factors included walking or running while holding an object in hand or mouth and underdeveloped walking skills. CONCLUSION: Interventions for preventing falls should be designed specifically for Chinese families, especially considering family function in the context of Chinese culture. Social media reports could provide rich information for researchers.

7.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928379

ABSTRACT

Stylo (Stylosanthes spp.) is an important pasture legume with strong aluminum (Al) resistance. However, the molecular mechanisms underlying its Al tolerance remain fragmentary. Due to the incomplete genome sequence information of stylo, we first conducted full-length transcriptome sequencing for stylo root tips treated with and without Al and identified three Snakin/GASA genes, namely, SgSnakin1, SgSnakin2, and SgSnakin3. Through quantitative RT-PCR, we found that only SgSnakin1 was significantly upregulated by Al treatments in stylo root tips. Histochemical localization assays further verified the Al-enhanced expression of SgSnakin1 in stylo root tips. Subcellular localization in both tobacco and onion epidermis cells showed that SgSnakin1 localized to the cell wall. Overexpression of SgSnakin1 conferred Al tolerance in transgenic Arabidopsis, as reflected by higher relative root growth and cell vitality, as well as lower Al concentration in the roots of transgenic plants. Additionally, overexpression of SgSnakin1 increased the activities of SOD and POD and decreased the levels of O2·- and H2O2 in transgenic Arabidopsis in response to Al stress. These findings indicate that SgSnakin1 may function in Al resistance by enhancing the scavenging of reactive oxygen species through the regulation of antioxidant enzyme activities.


Subject(s)
Aluminum , Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Reactive Oxygen Species , Aluminum/toxicity , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Fabaceae/metabolism , Fabaceae/genetics , Fabaceae/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Hydrogen Peroxide/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects
8.
New Phytol ; 237(3): 734-745, 2023 02.
Article in English | MEDLINE | ID: mdl-36324147

ABSTRACT

Legumes such as soybean are considered important crops as they provide proteins and oils for humans and livestock around the world. Different from other crops, leguminous crops accumulate nitrogen (N) for plant growth through symbiotic nitrogen fixation (SNF) in coordination with rhizobia. A number of studies have shown that efficient SNF requires the cooperation of other nutrients, especially phosphorus (P), a nutrient deficient in most soils. During the last decades, great progress has been made in understanding the molecular mechanisms underlying the interactions between SNF and P nutrition, specifically through the identification of transporters involved in P transport to nodules and bacteroids, signal transduction, and regulation of P homeostasis in nodules. These studies revealed a distinct N-P interaction in leguminous crops, which is characterized by specific signaling cross talk between P and SNF. This review aimed to present an updated picture of the cross talk between N fixation and P nutrition in legumes, focusing on soybean as a model crop, and Medicago truncatula and Lotus japonicus as model plants. We also discuss the possibilities for enhancing SNF through improving P nutrition, which are important for high and sustainable production of leguminous crops.


Subject(s)
Lotus , Medicago truncatula , Humans , Nitrogen Fixation/physiology , Lotus/metabolism , Medicago truncatula/metabolism , Glycine max/metabolism , Symbiosis/physiology , Crops, Agricultural/metabolism , Root Nodules, Plant/metabolism , Nitrogen/metabolism , Phosphorus/metabolism
9.
J Exp Bot ; 74(3): 1140-1156, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36455868

ABSTRACT

Increased root secretion of H+ is a known strategy in plant adaption to low phosphorus (P) stress as it enhances mobilization of sparingly soluble P sources in the soil. However, our knowledge of the full effects induced by this enhanced acidification of the rhizosphere remains incomplete. In this study we found that P deficiency increased the net H+ flux rate from soybean (Glycine max) roots. Among the eight H+-pyrophosphatase (GmVP) genes in the soybean genome, GmVP2 showed the highest expression level under low P conditions. Transient expression of a GmVP2-GFP construct in tobacco (Nicotiana tabacum) leaves, together with functional characterization of GmVP2 in transgenic soybean hairy roots demonstrated that it encodes a plasma-membrane transporter that mediates H+ exudation. Overexpression of GmVP2 in Arabidopsis resulted in enhanced root H+ exudation, promoted root growth, and improved the utilization of sparingly soluble Ca-P. The improved root growth caused by GmVP2-overexpression might be due to the differential expression of genes related to hormone and flavonoid metabolism, and to root development. Overexpression of GmVP2 also changed the structure of the rhizospheric microbial community, as reflected by a preferential accumulation of Acidobacteria. Overall, our results suggest that GmVP2 mediates H+ exudation in the root response to Pi starvation, and that this influences plant growth, the mobilization sparingly soluble P-sources, and the structure of the microbial community in a coordinated manner.


Subject(s)
Arabidopsis , Phosphorus , Phosphorus/metabolism , Soil/chemistry , Protons , Rhizosphere , Plant Roots/metabolism , Arabidopsis/physiology
10.
Stem Cells ; 40(2): 133-148, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35257186

ABSTRACT

The N-terminal caveolin-binding motif (CBM) in Na/K-ATPase (NKA) α1 subunit is essential for cell signaling and somitogenesis in animals. To further investigate the molecular mechanism, we have generated CBM mutant human-induced pluripotent stem cells (iPSCs) through CRISPR/Cas9 genome editing and examined their ability to differentiate into skeletal muscle (Skm) cells. Compared with the parental wild-type human iPSCs, the CBM mutant cells lost their ability of Skm differentiation, which was evidenced by the absence of spontaneous cell contraction, marker gene expression, and subcellular myofiber banding structures in the final differentiated induced Skm cells. Another NKA functional mutant, A420P, which lacks NKA/Src signaling function, did not produce a similar defect. Indeed, A420P mutant iPSCs retained intact pluripotency and ability of Skm differentiation. Mechanistically, the myogenic transcription factor MYOD was greatly suppressed by the CBM mutation. Overexpression of a mouse Myod cDNA through lentiviral delivery restored the CBM mutant cells' ability to differentiate into Skm. Upstream of MYOD, Wnt signaling was demonstrated from the TOPFlash assay to have a similar inhibition. This effect on Wnt activity was further confirmed functionally by defective induction of the presomitic mesoderm marker genes BRACHYURY (T) and MESOGENIN1 (MSGN1) by Wnt3a ligand or the GSK3 inhibitor/Wnt pathway activator CHIR. Further investigation through immunofluorescence imaging and cell fractionation revealed a shifted membrane localization of ß-catenin in CBM mutant iPSCs, revealing a novel molecular component of NKA-Wnt regulation. This study sheds light on a genetic regulation of myogenesis through the CBM of NKA and control of Wnt/ß-catenin signaling.


Subject(s)
Glycogen Synthase Kinase 3 , beta Catenin , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Caveolin 1/pharmacology , Cell Differentiation , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Mice , Muscle Development/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
11.
Environ Res ; 225: 115616, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36871940

ABSTRACT

This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to ß-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces from RA were added into soil for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed at RA, especially some high-risk ARGs carried by pathogens. Thus, greater attentions should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.


Subject(s)
Bombyx , Metals, Heavy , Morus , Animals , Anti-Bacterial Agents/pharmacology , Bombyx/genetics , Manganese , Genes, Bacterial , Morus/genetics , Soil , Escherichia coli , Drug Resistance, Microbial/genetics , Metals, Heavy/toxicity , Feces , Mining
12.
Pak J Pharm Sci ; 36(3): 819-827, 2023 May.
Article in English | MEDLINE | ID: mdl-37580931

ABSTRACT

Gastric ulcer is a common gastrointestinal disease caused by excessive gastric acid secretion, which has been recognized as one of the most common causes of morbidity and mortality in the world. The skin of Rana chensinensis is rich in collagen and many previous studies have shown that it has certain bioactivity. Therefore, we extracted and purified collagen with a molecular weight less than 10000 Da from the skin of Rana chensinensis, and studied its gastric protective mechanism through the model of ethanol-induced gastric ulcer in Balb/c mice. The results showed that through macroscopic observation and significantly reduced ulcer index, it was proved that PCRCS could protect gastric mucosa and alleviate the damage of ethanol to gastric mucosa. PCRCS reduced ethanol-induced oxidative stress by boosting depleted SOD levels and dramatically lowering MDA levels, as well as significantly reducing lipid peroxidation. Additionally PCRCS (Protein Chinese Rana chesinensis Skin) additionally decreased the launch of inflammatory mediators TNF-α and IL-6 and more desirable the content material of protective elements NO and PGE2 in gastric mucosa. Based on these findings, we believe that PCRCS has potential stomach protective effects on ethanol-induced gastric ulcer, which may be achieved by inhibiting oxidative stress and stomach inflammation.


Subject(s)
Anti-Ulcer Agents , Gastric Mucosa , Ranidae , Stomach Ulcer , Animals , Mice , Anti-Ulcer Agents/adverse effects , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Collagen/pharmacology , Ethanol/toxicity , Gastric Mucosa/drug effects , Mice, Inbred BALB C , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Protective Agents/adverse effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , China , Disease Models, Animal , Skin
13.
Plant J ; 108(5): 1422-1438, 2021 12.
Article in English | MEDLINE | ID: mdl-34587329

ABSTRACT

Phosphorus (P) deficiency adversely affects nodule development as reflected by reduced nodule fresh weight in legume plants. Though mechanisms underlying nodule adaptation to P deficiency have been studied extensively, it remains largely unknown which regulator mediates nodule adaptation to P deficiency. In this study, GUS staining and quantitative reverse transcription-PCR analysis reveal that the SPX member GmSPX5 is preferentially expressed in soybean (Glycine max) nodules. Overexpression of GmSPX5 enhanced soybean nodule development particularly under phosphate (Pi) sufficient conditions. However, the Pi concentration was not affected in soybean tissues (i.e., leaves, roots, and nodules) of GmSPX5 overexpression or suppression lines, which distinguished it from other well-known SPX members functioning in control of Pi homeostasis in plants. Furthermore, GmSPX5 was observed to interact with the transcription factor GmNF-YC4 in vivo and in vitro. Overexpression of either GmSPX5 or GmNF-YC4 significantly upregulated the expression levels of five asparagine synthetase-related genes (i.e., GmASL2-6) in soybean nodules. Meanwhile, yeast one-hybrid and luciferase activity assays strongly suggested that interactions of GmSPX5 and GmNF-YC4 activate GmASL6 expression through enhancing GmNF-YC4 binding of the GmASL6 promoter. These results not only demonstrate the GmSPX5-GmNF-YC4-GmASL6 regulatory pathway mediating soybean nodule development, but also considerably improve our understanding of SPX functions in legume crops.


Subject(s)
Glycine max/genetics , Phosphates/deficiency , Plant Proteins/metabolism , Adaptation, Physiological , Homeostasis , Phosphorus/deficiency , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Glycine max/growth & development , Glycine max/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Plant Cell ; 31(12): 2973-2995, 2019 12.
Article in English | MEDLINE | ID: mdl-31615848

ABSTRACT

Under nutrient and energy-limiting conditions, plants up-regulate sophisticated catabolic pathways such as autophagy to remobilize nutrients and restore energy homeostasis. Autophagic flux is tightly regulated under these circumstances through the AuTophaGy-related1 (ATG1) kinase complex, which relays upstream nutrient and energy signals to the downstream components that drive autophagy. Here, we investigated the role(s) of the Arabidopsis (Arabidopsis thaliana) ATG1 kinase during autophagy through an analysis of a quadruple mutant deficient in all four ATG1 isoforms. These isoforms appear to act redundantly, including the plant-specific, truncated ATG1t variant, and like other well-characterized atg mutants, homozygous atg1abct quadruple mutants display early leaf senescence and hypersensitivity to nitrogen and fixed-carbon starvations. Although ATG1 kinase is essential for up-regulating autophagy under nitrogen deprivation and short-term carbon starvation, it did not stimulate autophagy under prolonged carbon starvation. Instead, an ATG1-independent response arose requiring phosphatidylinositol-3-phosphate kinase (PI3K) and SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), possibly through phosphorylation of the ATG6 subunit within the PI3K complex by the catalytic KIN10 subunit of SnRK1. Together, our data connect ATG1 kinase to autophagy and reveal that plants engage multiple pathways to activate autophagy during nutrient stress, which include the ATG1 route as well as an alternative route requiring SnRK1 and ATG6 signaling.plantcell;31/12/2973/FX1F1fx1.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/genetics , Carbon/deficiency , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Ammonium Compounds/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Autophagy/physiology , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Beclin-1/chemistry , Beclin-1/genetics , Beclin-1/metabolism , Carbon/metabolism , Membrane Proteins/metabolism , Mutation , Nitrogen/deficiency , Nitrogen/metabolism , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Isoforms , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Vacuoles/genetics , Vacuoles/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
15.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35562981

ABSTRACT

Low phosphorus (P) availability limits soybean growth and yield. A set of potential strategies for plant responses to P deficiency have been elucidated in the past decades, especially in model plants such as Arabidopsis thaliana and rice (Oryza sativa). Recently, substantial efforts focus on the mechanisms underlying P deficiency improvement in legume crops, especially in soybeans (Glycine max). This review summarizes recent advances in the morphological, metabolic, and molecular responses of soybean to phosphate (Pi) starvation through the combined analysis of transcriptomics, proteomics, and metabolomics. Furthermore, we highlight the functions of the key factors controlling root growth and P homeostasis, base on which, a P signaling network in soybean was subsequently presumed. This review also discusses current barriers and depicts perspectives in engineering soybean cultivars with high P efficiency.


Subject(s)
Arabidopsis , Fabaceae , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Crops, Agricultural/metabolism , Fabaceae/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Glycine max/metabolism
16.
Small ; 17(32): e2101495, 2021 08.
Article in English | MEDLINE | ID: mdl-34213822

ABSTRACT

The development of alternative strategies for the efficient treatment of subcutaneous abscesses that do not require the massive use of antibiotics and surgical intervention is urgently needed. Herein, a novel synergistic antibacterial strategy based on photodynamic (PDT) and NO gas therapy is reported, in which, a PDT-driven NO controllable generation system (Ce6@Arg-ADP) is developed with l-Arg-rich amphiphilic dendritic peptide (Arg-ADP) as a carrier. This carrier not only displays superior bacterial association and biofilm penetration performance, but also acts as a versatile NO donor. Following efficient penetration into the interior of the biofilms, Ce6@Arg-ADP can rapidly produce massive NO via utilizing the H2 O2 generated during PDT to oxidize Arg-ADP to NO and l-citrulline, without affecting singlet oxygen (1 O2 ) production. The combination of 1 O2 and the reactive by-products of NO offers notable synergistic antibacterial and biofilm eradication effects. Importantly, following efficient elimination of all bacteria from the abscess site, Arg-ADP can further generate trace quantities of NO to facilitate the angiogenesis and epithelialization of the wound tissues, thereby notably promotes wound healing. Together, this study clearly suggests that Arg-ADP is a versatile NO donor, and the combination of PDT and NO represents a promising strategy for the efficient treatment of subcutaneous abscesses.


Subject(s)
Bacterial Infections , Photochemotherapy , Bacterial Infections/drug therapy , Humans , Peptides , Photosensitizing Agents/therapeutic use , Wound Healing
17.
J Membr Biol ; 254(5-6): 513-529, 2021 12.
Article in English | MEDLINE | ID: mdl-34297135

ABSTRACT

In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium-potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.


Subject(s)
Signal Transduction , Glucose , Humans , Kidney/metabolism , Sodium/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism
18.
Arch Microbiol ; 203(6): 3657-3665, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33993326

ABSTRACT

Glycyrrhiza uralensis Fisch is a widely cultivated traditional Chinese medicine plant. In the present study, culture-independent microbial diversity analysis and functional prediction of rhizosphere microbes associated with wild and cultivated G. uralensis Fisch plant (collected from two locations) were carried. Soil physicochemical parameters were tested to assess their impact on microbial communities. A total of 4428 OTUs belonging to 41 bacterial phyla were identified. In general, cultivated sample sites were dominated by Actinobacteria whereas wild sample sites were dominated by Proteobacteria. The alpha diversity analysis showed the observed species number was higher in cultivated soil samples when compared with wild soil samples. In beta diversity analysis, it was noticed that the weighted-unifrac distance of two cultivated samples was closer although the samples were collected from different regions. Functional annotation based on PICRUST and FAPROTAX showed that the nitrogen metabolism pathway such as nitrate reduction, nitrogen fixation, nitrite ammonification, and nitrite respiration were more abundant in rhizosphere microorganisms of wild G. uralensis Fisch. These results also correlate in redundancy analysis results which show correlation between NO3--N and wild samples, which indicated that nitrogen nutrition conditions might be related to the quality of G. uralensis Fisch.


Subject(s)
Glycyrrhiza uralensis/microbiology , Plants, Medicinal/microbiology , Rhizosphere , Glycyrrhiza uralensis/growth & development , Glycyrrhiza uralensis/metabolism , Nitrogen Fixation , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism , Soil
19.
Ecotoxicol Environ Saf ; 227: 112880, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34655883

ABSTRACT

Phosphorus (P) containing minerals are identified as effective Pb stabilizers in soil, while their low solubility limit the Pb immobilization efficiency. In this work, the combination of phosphate solubilizing fungi (PSF) Penicillium oxalicum and tricalcium phosphate (TCP) was constructed and applied to improve Pb immobilization stabilities in medium and soils. P. oxalicum+ TCP could significantly improve Pb2+ removal to above 99% under different TCP/Pb2+ and pH values. TCP and P. oxalicum could remarkably immobilize Pb by ion exchange, and PbC2O4 precipitation or surface adsorption, respectively. While the enhanced Pb immobilization in P. oxalicum+ TCP was explained by stronger Pb2+ interaction with tryptophan protein-like substances in extracellular polymeric substance, and the formation of the most stable Pb-phosphate compound hydroxypyromorphite (Pb5(PO4)3OH). Toxicity characteristic leaching procedure test showed that only 0.91% of Pb2+ was leachable in P. oxalicum+ TCP treatment, significantly lower than that in P. oxalicum (2.90%) and TCP (7.52%) treatments. In addition, the lowest soil exchangeable Pb fraction (37.1%) and the highest available soil P (88.0 mg/kg) were both found in P. oxalicum+ TCP treatment. By synergistically forming stable Pb-containing products, thus the combination of PSF and P minerals could significantly improve Pb2+ immobilization and stability in soils.


Subject(s)
Penicillium , Soil Pollutants , Calcium Phosphates , Extracellular Polymeric Substance Matrix/chemistry , Lead , Phosphates/analysis , Soil , Soil Pollutants/analysis
20.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830230

ABSTRACT

Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear whether other key regulators might control anthocyanin synthesis through protein modification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana significantly resulted in anthocyanin accumulations in shoots, accompanied with increased transcripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3'H, AtDFR, AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and GmCSN5B.


Subject(s)
Anthocyanins/biosynthesis , Arabidopsis Proteins/genetics , Arabidopsis/drug effects , COP9 Signalosome Complex/genetics , Gene Expression Regulation, Plant , Glycine max/drug effects , Phosphorus/pharmacology , Plant Leaves/drug effects , Acyltransferases/genetics , Acyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , COP9 Signalosome Complex/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Genetic Complementation Test , Membrane Proteins/genetics , Membrane Proteins/metabolism , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Phosphorus/deficiency , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Glycine max/genetics , Glycine max/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL