Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 54(19): 12539-12549, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32897064

ABSTRACT

The formation of vivianite (Fe3(PO4)2·8H2O) in iron (Fe)-dosed wastewater treatment facilities has the potential to develop into an economically feasible method of phosphorus (P) recovery. In this work, a long-term steady FeIII-dosed University of Cape Town process-membrane bioreactor (UCT-MBR) system was investigated to evaluate the role of Fe transformations in immobilizing P via vivianite crystallization. The highest fraction of FeII, to total Fe (Fetot), was observed in the anaerobic chamber, revealing that a redox condition suitable for FeIII reduction was established by improving operational and configurational conditions. The supersaturation index for vivianite in the anaerobic chamber varied but averaged ∼4, which is within the metastable zone and appropriate for its crystallization. Vivianite accounted for over 50% of the Fetot in the anaerobic chamber, and its oxidation as it passed through the aerobic chambers was slow, even in the presence of high dissolved oxygen concentrations at circumneutral pH. This study has shown that the high stability and growth of vivianite crystals in oxygenated activated sludge can allow for the subsequent separation of vivianite as a P recovery product.


Subject(s)
Iron , Phosphorus , Ferrous Compounds , Phosphates , Sewage , Waste Disposal, Fluid
2.
Environ Sci Technol ; 53(15): 9045-9053, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31251600

ABSTRACT

By mimicking iron(Fe)-based phosphorus (P) immobilization in natural environments, an Fe-retrofitted UCT-MBR involving in situ vivianite crystallization for removing and recovering P from sewage was developed, and its performance was examined in this work. We show that dosing of ferrihydrite, once biological P uptake reached its limit, enabled effective ongoing P removal; whereas conventional conditions in the anaerobic chamber of the University of Cape Town (UCT) system (i.e., a sludge retention time of hours and a completely mixed sludge phase) was insufficient for a satisfactory Fe(III) bioreduction, with the overaccumulation of Fe(III) as fine particles finally resulting in severe membrane fouling and collapse in P removal. The enhancement of reductive conditions in the anaerobic chamber by lowering agitation and adding biocarriers to favor Fe(III) reduction was found to be effective in enabling ongoing P removal and recovery. The average level of effluent P was as low as 0.18 mg/L for a period of 258 d under this condition. Using chemical and spectroscopic methods, the P product was identified as primarily vivianite: Fe3(PO4)2·8H2O. The in situ crystallization of vivianite as a sink for P enabled the UCT-MBR to continuously remove and recover sewage P with no need for sludge discharge.


Subject(s)
Phosphorus , Sewage , Bioreactors , Crystallization , Ferric Compounds , Ferrous Compounds , Phosphates , Waste Disposal, Fluid
3.
Sci Total Environ ; 688: 87-93, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31229832

ABSTRACT

Chemical phosphorus removal (CPR) is being increasingly adopted in wastewater treatment plants (WWTPs) to enhance P elimination to comply with stringent discharge limits. However, strategies to recover P enriched in the produced waste activated sludge (WAS) are not well developed. In this study, we investigated the release of P in WAS from three WWTPs employing Al salt enhanced CPR by alkaline treatment. We also monitored P mobilization by tracking the dynamics of P fractions and species, the dissolution of major metals, and sludge cell integrities as pH was altered. The level of aqueous total phosphorus (TPaq) in the sludge increased significantly to >200 mg/L (from <11 mg/L in the raw sludge) as the pH was increased to 12, with the majority being PO4-Paq especially at high pHs. The dominance of non-apatite inorganic phosphorus (NAIP) in the sludge-P, a good correlation observed between aqueous PO4-P and aqueous Al, and the reversibility of P mobilization all suggest that the dissolution of Al-bound P was largely responsible for the sludge-P release. Sludge cell integrity, on the other hand, was not closely correlated with TPaq concentrations. Although the level of TP released in this study is among the highest, a more efficient strategy still needs to be developed to further enhance sludge-P release when TP content in the sludge mixture (TPmx) is considered (TPmx was >800 mg/L in this work).


Subject(s)
Phosphorus/chemistry , Waste Disposal, Fluid/methods , Water Pollutants/chemistry , Aluminum/chemistry , Phosphorus/analysis , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL