Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Proc Natl Acad Sci U S A ; 120(52): e2310916120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38117856

ABSTRACT

The kinetics and pathway of most catalyzed reactions depend on the existence of interface, which makes the precise construction of highly active single-atom sites at the reaction interface a desirable goal. Herein, we propose a thermal printing strategy that not only arranges metal atoms at the silica and carbon layer interface but also stabilizes them by strong coordination. Just like the typesetting of Chinese characters on paper, this method relies on the controlled migration of movable nanoparticles between two contact substrates and the simultaneous emission of atoms from the nanoparticle surface at high temperatures. Observed by in situ transmission electron microscopy, a single Fe3O4 nanoparticle migrates from the core of a SiO2 sphere to the surface like a droplet at high temperatures, moves along the interface of SiO2 and the coated carbon layer, and releases metal atoms until it disappears completely. These detached atoms are then in situ trapped by nitrogen and sulfur defects in the carbon layer to generate Fe single-atom sites, exhibiting excellent activity for oxygen reduction reaction. Also, sites' densities can be regulated by controlling the size of Fe3O4 nanoparticle between the two surfaces. More importantly, this strategy is applicable to synthesize Mn, Co, Pt, Pd, Au single-atom sites, which provide a general route to arrange single-atom sites at the interface of different supports for various applications.

3.
J Med Virol ; 96(6): e29724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837426

ABSTRACT

Although the burden of the human immunodeficiency virus (HIV) in the Asia-Pacific region is increasingly severe, comprehensive evidence of the burden of HIV is scarce. We aimed to report the burden of HIV in people aged 15-79 years from 1990 to 2019 using data from the Global Burden of Disease Study (GBD) 2019. We analyzed rates of age-standardized disability-adjusted life years (ASDR), age-standardized mortality (ASMR), and age-standardized incidence (ASIR) in our age-period-cohort analysis by sociodemographic index (SDI). According to HIV reports in 2019 from 29 countries in the Asia-Pacific region, the low SDI group in Papua New Guinea had the highest ASDR, ASMR, and ASIR. From 1990 to 2019, the ASDR, ASIR, and ASMR of persons with acquired immune deficiency syndrome (AIDS) increased in 21 (72%) of the 29 countries in the Asia-Pacific region. During the same period, the disability-adjusted life years (DALYs) of AIDS patients in the low SDI group in the region grew the fastest, particularly in Nepal. The incidence of HIV among individuals aged 20-30 years in the low-middle SDI group was higher than that of those in the other age groups. In 2019, unsafe sex was the main cause of HIV-related ASDR in the region's 29 countries, followed by drug use. The severity of the burden of HIV/AIDS in the Asia-Pacific region is increasing, especially among low SDI groups. Specific public health policies should be formulated based on the socioeconomic development level of each country to alleviate the burden of HIV/AIDS.


Subject(s)
Global Burden of Disease , HIV Infections , Humans , Adult , Middle Aged , Adolescent , Young Adult , HIV Infections/epidemiology , HIV Infections/mortality , Male , Female , Aged , Global Burden of Disease/trends , Asia/epidemiology , Cohort Studies , Incidence , Disability-Adjusted Life Years , Cost of Illness
4.
Anal Biochem ; 693: 115597, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38969155

ABSTRACT

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.


Subject(s)
Electrochemical Techniques , Iridium , Vibrio parahaemolyticus , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/genetics , Hydrogen-Ion Concentration , Electrochemical Techniques/methods , Iridium/chemistry , Nucleic Acid Amplification Techniques/methods , Biosensing Techniques/methods , Limit of Detection , Electrodes
5.
Ann Hematol ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494553

ABSTRACT

Minimal residual disease (MRD) based risk stratification criteria for specific genetic subtypes remained unclear in childhood acute lymphoblastic leukemia (ALL). Among 723 children with newly diagnosed ALL treated with the Chinese Children Leukemia Group CCLG-2008 protocol, MRD was assessed at time point 1 (TP1, at the end of induction) and TP2 (before consolidation treatment) and the MRD levels significantly differed in patients with different fusion genes or immunophenotypes (P all < 0.001). Moreover, the prognostic impact of MRD varied by distinct molecular subtypes. We stratified patients in each molecular subtype into two MRD groups based on the results. For patients carrying BCR::ABL1 or KMT2A rearrangements, we classified patients with MRD < 10-2 at both TP1 and TP2 as the low MRD group and the others as the high MRD group. ETV6::RUNX1+ patients with TP1 MRD < 10-3 and TP2 MRD-negative were classified as the low MRD group and the others as the high MRD group. For T-ALL, We defined children with TP1 MRD ≥ 10-3 as the high MRD group and the others as the low MRD group. The 10-year relapse-free survival of low MRD group was significantly better than that of high MRD group. We verified the prognostic impact of the subtype-specific MRD-based stratification in patients treated with the BCH-ALL2003 protocol. In conclusion, the subtype-specific MRD risk stratification may contribute to the precise treatment of childhood ALL.

6.
BMC Infect Dis ; 24(1): 36, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166694

ABSTRACT

BACKGROUND: The purpose of this study is to analyze the influencing factors associated with Long-COVID in patients infected with Omicron variant of COVID-19 in Changchun City, Jilin Province, China three months after discharge in March 2022. METHODS: In this study, we conducted a telephone follow-up based on the real-world data collected from the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun Tongyuan Shelter Hospital and Changchun Infectious Disease Hospital during the COVID-19 epidemic in Changchun in March 2022. We used the Global COVID-19 Clinical Platform Case Report Form for Post COVID condition as a follow-up questionnaire to collect the general information, past medical history, clinical symptoms, COVID-19 vaccine inoculation doses, and other relevant information to analyze the symptom characteristics of COVID-19 patients three months after discharge from the hospital and related factors affecting Long COVID. RESULTS: A total of 1,806 patients with COVID-19 were included in this study, 977 males and 829 females, with a mean age of 38.5 [30.0, 49.4] years, and the number of female patients suffering from Long COVID (50.87%) was greater than male patients (p = 0.023). The binary logistic regression analysis of factors influencing Long COVID showed that smoking history (OR (95%CI) = 0.551(0.425-0.714), p < 0.001, taking never smoking as a reference), allergy history (OR (95%CI) = 1.618 (1.086-2.413), p-value 0.018, taking no allergy as a reference), first symptoms (OR (95%CI) = 0.636 (0.501-0.807), p < 0.001, with no first symptoms as reference) and COVID-19 vaccine inoculation doses (OR (95%CI) = 1.517 (1.190-1.933), p-value 0.001, with ≤ 2 doses of COVID-19 vaccine inoculation doses as reference) constituted its influencing factors. The first symptoms of patients on admission mainly included fever (512 cases, 71.81%), cough (279 cases, 39.13%) and dry or itchy throat (211 cases, 29.59%). The most common symptoms of Long COVID were persistent fatigue (68 cases), amnesia (61 cases), insomnia (50 cases) and excessive sweating (50 cases). CONCLUSION: The first symptoms on admission were predominantly fever, cough and dry or itchy throat. The most common symptoms of Long COVID were persistent fatigue, amnesia, insomnia and excessive sweating, and female patients were at a higher risk of Long COVID.


Subject(s)
COVID-19 , Sleep Initiation and Maintenance Disorders , Adult , Female , Humans , Male , Amnesia , Cough , COVID-19/epidemiology , COVID-19 Vaccines , Cross-Sectional Studies , Fatigue , Fever/epidemiology , Patient Discharge , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Middle Aged
7.
Environ Res ; 251(Pt 1): 118650, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38458586

ABSTRACT

The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that the degradation efficiency of enoxacin reached 89.7% at pH 3. The hydroxyl radical (∙OH) had a significant impact on the degradation process, with a cumulative concentration of 43.9 µmol L-1 at pH 3. Photogenerated holes and electrons participated in the generation of ∙OH. Eleven degradation products of enoxacin were identified, with the main degradation pathways being defluorination, quinolone ring and piperazine ring cleavage and oxidation. These findings indicate that the ferrihydrite-catalyzed photo-Fenton process is a valid way for treating water contaminated with FQ antibiotics.


Subject(s)
Enoxacin , Ferric Compounds , Hydrogen Peroxide , Iron , Water Pollutants, Chemical , Ferric Compounds/chemistry , Water Pollutants, Chemical/chemistry , Iron/chemistry , Enoxacin/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Anti-Bacterial Agents/chemistry
8.
BMC Psychiatry ; 24(1): 371, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755677

ABSTRACT

OBJECTIVE: This study aims to conduct an exhaustive evaluation of Vilazodone's safety in clinical application and to unearth the potential adverse event (AE) risks associated with its utilization based on FDA Adverse Event Reporting System (FAERS) database. METHODS: This research employed data spanning from the first quarter of 2011 to the third quarter of 2023 from the FAERS database. Various signal detection methodologies, including the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM), were utilized to ascertain the correlation between Vilazodone and specific AEs. RESULTS: The study compiled a total of 17,439,268 reports of drug AEs, out of which 5,375 were related to Vilazodone. Through signal mining, 125 Preferred Terms (PTs) encompassing 27 System Organ Classes (SOCs) were identified. The findings indicated a higher prevalence among females and patients within the 45 to 65 age bracket. The principal categories of AEs included Psychiatric disorders, Nervous system disorders, and Gastrointestinal disorders, with prevalent incidents of Diarrhoea, Nausea, and Insomnia. Moreover, the study identified robust signals of novel potential AEs, notably in areas such as sleep disturbances (Sleep paralysis, Hypnagogic hallucination, Rapid eye movements sleep abnormal, Sleep terror, Terminal insomnia, Tachyphrenia), sexual dysfunctions (Female orgasmic disorder, Orgasm abnormal, Disturbance in sexual arousal, Spontaneous penile erection, Anorgasmia, Sexual dysfunction, Ejaculation delayed), and other symptoms and injuries (Electric shock sensation, Violence-related symptom, Gun shot wound). CONCLUSION: Although Vilazodone presents a positive prospect in the management of MDD, the discovery of AEs linked to its use, particularly the newly identified potential risks such as sleep and sexual dysfunctions, necessitates heightened vigilance among clinicians.


Subject(s)
Adverse Drug Reaction Reporting Systems , Vilazodone Hydrochloride , Humans , Vilazodone Hydrochloride/adverse effects , Male , Female , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Middle Aged , United States/epidemiology , Adult , Aged , Databases, Factual , United States Food and Drug Administration , Young Adult , Adolescent , Bayes Theorem
9.
Matern Child Health J ; 28(5): 949-958, 2024 May.
Article in English | MEDLINE | ID: mdl-38198102

ABSTRACT

OBJECTIVES: To examine associations between pregnancy planning and autism spectrum disorder (ASD) in offspring. METHODS: The Study to Explore Early Development (SEED), a multi-site case-control study, enrolled preschool-aged children with ASD, other DDs, and from the general population (POP). Some children with DDs had ASD symptoms but did not meet the ASD case definition. We examined associations between mother's report of trying to get pregnant (pregnancy planning) and (1) ASD and (2) ASD symptomatology (ASD group, plus DD with ASD symptoms group combined) (each vs. POP group). We computed odds ratios adjusted for demographic, maternal, health, and perinatal health factors (aORs) via logistic regression. Due to differential associations by race-ethnicity, final analyses were stratified by race-ethnicity. RESULTS: Pregnancy planning was reported by 66.4%, 64.8%, and 76.6% of non-Hispanic White (NHW) mothers in the ASD, ASD symptomatology, and POP groups, respectively. Among NHW mother-child pairs, pregnancy planning was inversely associated with ASD (aOR = 0.71 [95% confidence interval 0.56-0.91]) and ASD symptomatology (aOR = 0.67 [0.54-0.84]). Pregnancy planning was much less common among non-Hispanic Black mothers (28-32% depending on study group) and Hispanic mothers (49-56%) and was not associated with ASD or ASD symptomatology in these two race-ethnicity groups. CONCLUSION: Pregnancy planning was inversely associated with ASD and ASD symptomatology in NHW mother-child pairs. The findings were not explained by several adverse maternal or perinatal health factors. The associations observed in NHW mother-child pairs did not extend to other race-ethnicity groups, for whom pregnancy planning was lower overall.


Subject(s)
Autism Spectrum Disorder , Child, Preschool , Female , Humans , Pregnancy , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/diagnosis , Case-Control Studies , Ethnicity , Hispanic or Latino , Mothers , Black or African American , White
10.
Ecotoxicol Environ Saf ; 272: 116037, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38301581

ABSTRACT

BACKGROUND: In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS: Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen­activated protein kinase [p38MAPK] inhibitor). MOA through ERß-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS: For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERß, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 µM. CONCLUSIONS: The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERß receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 µM.


Subject(s)
Butadienes , Estrogen Receptor beta , MAP Kinase Signaling System , Nitriles , Humans , Female , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Signal Transduction , Epithelial Cells/metabolism , RNA, Messenger/metabolism
11.
Ecotoxicol Environ Saf ; 283: 116853, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137468

ABSTRACT

The effect and underlying mechanism of tetrabromobisphenol A (TBBPA), a plastic additive, on biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA USA300) remain unknown. This study first investigated the impact of different concentrations of TBBPA on the growth and biofilm formation of USA300. The results indicated that a low concentration (0.5 mg/L) of TBBPA promoted the growth and biofilm formation of USA300, whereas high concentrations (5 mg/L and 10 mg/L) of TBBPA had inhibitory effects. Further exploration revealed that the low concentration of TBBPA enhance biofilm formation by promoting the synthesis of extracellular proteins, release of extracellular DNA (eDNA), and production of staphyloxanthin. RTqPCR analysis demonstrated that the low concentration of TBBPA upregulated genes associated with extracellular protein synthesis (sarA, fnbA, fnbB, aur) and eDNA formation (atlA) and increased the expression of genes involved in staphyloxanthin biosynthesis (crtM), suggesting a potential mechanism for enhanced resistance of USA300 to adverse conditions. These findings shed light on how low concentrations of TBBPA facilitate biofilm formation in USA300 and highlight the indirect impact of plastic additives on pathogenic bacteria in terms of human health. In the future, in-depth studies about effects of plastic additives on pathogenicity of pathogenic bacteria should be conducted. CAPSULE: The protein and eDNA contents in biofilms of methicillin-resistant Staphylococcus aureus are increased by low concentrations of TBBPA.

12.
Chem Biodivers ; : e202401646, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102223

ABSTRACT

A focused chemical investigation into the polar fractions of a well-known traditional Chinese medicine called Sang-Bai-Pi (the root bark of Morus alba) yielded a panel of prenylated flavanones. The new compounds were identified as four pairs of enantiomers (1a/1b-4a/4b) featuring the same constitution structure, on the basis of HRMS, NMR and ECD analyses. Several previously reported known racemic co-metabolites were also analyzed and separated by HPLC on chiral columns, and the absolute configurations of pure enantiomers were established via ECD technique for the first time. The inhibition of these isolates against the antidiabetic target a-glycosidase was further tested, with most of them showing decent inhibitory activity compared with the positive control acarbose. The interaction mechanism of two selected compounds (3a & 4b) was explored by kinetics experiment, which revealed a mixed type of inhibition pattern toward the enzyme.

13.
Wei Sheng Yan Jiu ; 53(3): 441-454, 2024 May.
Article in Zh | MEDLINE | ID: mdl-38839586

ABSTRACT

OBJECTIVE: To investigate the effects of long-term(7 days and 14 days) bisphenol S(BPS) exposure on the ERß-MAPK signaling pathway, hormone secretion phenotype and cell cycle in human normal ovarian epithelial cells IOSE 80 at actual human exposure level. METHODS: Physiologically based pharmacokinetic model combined with BPS levels in the serum of women along the Yangtze River in China was used to determine the dosing concentrations of BPS, and vehicle control and 17 ß-estradiol(E_2) control were used. Complete medium with corresponding concentrations(0, 6.79×10~(-6), 6.79×10~(-4), 6.79×10~(-2), 6.79 µmol/L BPS and 10 nmol/L E_2) was replaced every 2 days. mRNA expressions of estrogen receptor(ERß and GPR30), key genes in MAPK signaling pathway(P38/JNK/ERK signaling pathway) and gonadotropin-releasing hormone-related genes(GnRH-I, GnRH-II and GnRH-R) were measured by qPCR. The ERß-MAPK signaling pathway inhibitors were employed to detect the effect of long-term exposure to BPS on the cell cycle by flow cytometry. Dose-response relationship analysis was performed to calculate the benchmark does lower confidence limits. RESULTS: Compared to the vehicle control, after 7 days exposure to BPS, the ratio of G_2/M phase was significantly increased(P<0.05), and the mRNA expressions of GnRH-I, GnRH-II and GnRH-R were significantly decreased(P<0.05); after 14 days exposure to BPS, the mRNA expressions of ESR2, MAPK3, and MAPK9 were significantly increased(P<0.05), and the mRNA expressions of GnRH-II and GnRH-R were significantly decreased(P<0.05). The GnRH-II mRNA expression level of BPS treatment for 7 days; the G_0/G_1 phase ratio, MAPK3 and MAPK8 mRNA expression level of BPS exposure for 14 days; and the GnRH-I mRNA expression level after BPS treatment for 7 days and 14 days showed a good dose-response relationship but with poor fit. CONCLUSION: Long-term low-dose exposure to BPS may cause cell cycle arrest by activating the ERß-MAPK signaling pathway, and may lead to changes in the hormone secretion of IOSE 80 cells.


Subject(s)
Epithelial Cells , Estrogen Receptor beta , MAP Kinase Signaling System , Ovary , Phenols , Sulfones , Humans , Phenols/toxicity , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , MAP Kinase Signaling System/drug effects , Ovary/drug effects , Ovary/metabolism , Sulfones/toxicity , Cell Line
14.
J Agric Food Chem ; 72(32): 17938-17952, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092914

ABSTRACT

Fifteen stilbenoid derivatives, including five previously undescribed ones (albaphenols A-E, 1-5) with diverse scaffolds, were obtained from the well-known agricultural economic tree Morus alba. Their structures, including absolute stereochemistries, were fully characterized by detailed interpretation of spectroscopic data and quantum chemical computational analyses of nuclear magnetic resonance (NMR) and electric circular dichroism (ECD). Albaphenol A (1) features an unprecedented rearranged carbon skeleton incorporating a novel 2-oxaspiro[bicyclo[3.2.1]octane-6,3'-furan] motif; albaphenol C (3) is likely derived from a cometabolite through an interesting intramolecular transesterification reaction; and albaphenol E (5) bears a cleavage-reconnection scaffold via a dioxane ring. All of the compounds exhibited significant inhibition against the diabetic target α-glucosidase, with low to submicromole IC50 values (0.70-8.27 µM), and the binding modes of selected molecules with the enzyme were further investigated by fluorescence quenching, kinetics, and molecular docking experiments. The antidiabetic effect of the most active and abundant mulberrofuran G (6) was further assessed in vivo in diabetic mice, revealing potent antihyperglycemic activity and comparable antidiabetic efficacy to the clinical drug acarbose.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Morus , Plant Extracts , Stilbenes , alpha-Glucosidases , Animals , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Mice , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Stilbenes/chemistry , Stilbenes/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Male , Morus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship , Kinetics
15.
J Biomater Appl ; : 8853282241268676, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39151162

ABSTRACT

One of the critical factors that determines the biological properties of scaffolds is their structure. Due to the mechanical and structural discrepancies between the target bone and implants, the poor internal architecture design and difficulty in degradation of conventional bone implants may cause several adverse outcomes. To date, many scaffolds, such as 3-D printed sandwich structures, have been successfully developed for the repair of bone defects; however, the steps of these methods are complex and costly. Hydrogels have emerged as a unique scaffold material for repairing bone defects because of their good biocompatibility and excellent physicochemical properties. However, studies exploring bioinspired hydrogel scaffolds with hierarchical structures are scarce. More efforts are needed to incorporate bioinspired structures into hydrogel scaffolds to achieve optimal osteogenic properties. In this study, we developed a low-cost and easily available hydrogel matrix that mimicked the natural structure of the bone's porous sandwich to promote new bone growth and tissue integration. A comprehensive evaluation was conducted on the microstructure, swelling rate, and mechanical properties of this hydrogel. Furthermore, a 3D finite element analysis was employed to model the structure-property relationship. The results indicate that the sandwich-structured hydrogel is a promising scaffold material for bone injury repair, exhibiting enhanced compressive stress, elastic modulus, energy storage modulus, and superior force transmission.

16.
Article in English | MEDLINE | ID: mdl-38942957

ABSTRACT

Psychiatric research encompasses diverse methodologies to understand the complex interplay between neurochemistry and behavior in mental health disorders. Despite significant advancements in pharmacological interventions, there remains a critical gap in understanding the precise functional changes underlying psychiatric conditions and the mechanisms of action of therapeutic agents. Genetically encoded sensors have emerged as powerful tools to address these challenges by enabling real-time monitoring of neurochemical dynamics in specific neuronal populations. This prospective explores the utility of neurotransmitter binding genetically encoded sensors in uncovering the nature of neuronal dysregulation underpinning mental illness, assessing the impact of pharmaceutical interventions, and facilitating the discovery of novel treatments.

17.
ACS Appl Mater Interfaces ; 16(9): 11849-11859, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38411114

ABSTRACT

To prepare anion exchange membranes with high water electrolysis and single fuel cell performance, an inorganic-organic composite (IOC) strategy with click cross-linked membranes coated with different contents of hydrophilic polar nanozirconia is proposed to fabricate composite membranes (CM) PBP-SH-Zrx. The performance test results showed that the CM PBP-SH-Zr4 not only has good through-plane ionic conductivity (167.7 mS cm-1, 80 °C), but also exhibits satisfactory dimensional stability (SR 16.5%, WU 206.4%, 80 °C), especially demonstrating excellent alkaline stability with only 16% degradation (2 M NaOH for 2200 h). In water electrolysis, the "microgap" between the membrane and catalyst layer (solid-solid interface) is alleviated, and the membrane electrode assembly (MEA) interfacial compatibility (liquid-solid-solid interface) is enhanced. The CM PBP-SH-Zr4 showed the lowest charge transfer resistance (Rct, 0.037 Ω cm2) and a high current density of 2.5 A cm-2 at 2.2 V, while the voltage drop was 0.361 mV h-1 after 360 h of endurance (six start-stop cycles) at 60 °C and 500 mA cm-2, proving a good water electrolysis durability. Moreover, an acceptable peak power density of 0.464 W cm-2 at 80 °C is achieved in a H2/O2 fuel cell with a PBP-SH-Zr4-AEM. Therefore, the IOC strategy can enhance the membrane's comprehensive performance and interface compatibility of MEA and may promote the development of anion exchange membranes (AEMs) for water electrolysis and fuel cells.

18.
Sci Total Environ ; 928: 172494, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631642

ABSTRACT

Environmental factors significantly impact grain mycobiome assembly and mycotoxin contamination. However, there is still a lack of understanding regarding the wheat mycobiome and the role of fungal communities in the interaction between environmental factors and mycotoxins. In this study, we collected wheat grain samples from 12 major wheat-producing provinces in China during both the harvest and storage periods. Our aim was to evaluate the mycobiomes in wheat samples with varying deoxynivalenol (DON) contamination levels and to confirm the correlation between environmental factors, the wheat mycobiome, and mycotoxins. The results revealed significant differences in the wheat mycobiome and co-occurrence network between contaminated and uncontaminated wheat samples. Fusarium was identified as the main differential taxon responsible for inducing DON contamination in wheat. Correlation analysis identified key factors affecting mycotoxin contamination. The results indicate that both environmental factors and the wheat mycobiome play significant roles in the production and accumulation of DON. Environmental factors can affect the wheat mycobiome assembly, and wheat mycobiome mediates the interaction between environmental factors and mycotoxin contamination. Furthermore, a random forest (RF) model was developed using key biological indicators and environmental features to predict DON contamination in wheat with accuracies exceeding 90 %. The findings provide data support for the accurate prediction of mycotoxin contamination and lay the foundation for the research on biological control technologies of mycotoxin through the assembly of synthetic microbial communities.


Subject(s)
Mycobiome , Mycotoxins , Triticum , Triticum/microbiology , Mycotoxins/analysis , Mycotoxins/metabolism , China , Edible Grain/microbiology , Food Contamination/analysis , Trichothecenes/analysis , Trichothecenes/metabolism , Fusarium , Environmental Monitoring
19.
Anal Methods ; 16(9): 1383-1389, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38348955

ABSTRACT

Enzymatic activity is important for a variety of technological applications, but the limited stability and complex structures of enzymes often limit their use. Therefore, designing powerful nanomaterial catalysts that are more stable and have higher catalytic activity than natural catalysts has been the pursuit of biotechnology. Here, inspired by electron transfer and the active site of laccase (LAC), four types of copper particles with LAC-like activity were synthesized using a simple hydrothermal method. Copper particles coated with the L-phenylalanine (F)-L-phenylalanine (F)-L-cysteine (C)-L-histidine (H) tetrapeptide exhibited higher LAC-like activity compared to those coated with a CH dipeptide, C, and H. This enhancement could be attributed to the higher structural homology and amino acid composition similarity with the natural LAC active center. The FFCH@CuNP nanozyme was employed for adrenaline detection, and it demonstrated outstanding activity, stability, and recyclability. Additionally, a method for the quantitative detection of adrenaline was established using a smartphone based on the FFCH@CuNP nanozymes. And the FFCH@CuNPs exhibited excellent sensitivity and specificity to adrenaline in a saliva-based test. Therefore, this work provides a reasonable pathway for the design of catalysts for future biotechnological and industrial applications.


Subject(s)
Laccase , Nanoparticles , Laccase/chemistry , Copper/chemistry , Colorimetry/methods , Epinephrine , Phenylalanine
20.
Org Lett ; 26(15): 2939-2944, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38602425

ABSTRACT

A selective three-component 1,2-sulfonyl etherification of aryl 1,3-dienes enabled by copper catalysis to afford biologically interesting alkenyl 1,2-sulfone ether derivatives through C-S and C-O bond formation is described. The protocol proceeds with the sulfonyl chloride and alcohols under simple, mild, and base-free conditions, providing a straightforward route to sulfonylated allyl ether compounds with broad functional group tolerance and excellent chemo- and regioselectivity. Mechanistic studies indicate that the selective alkene difunctionalization includes a key copper-mediated single-electron transfer process.

SELECTION OF CITATIONS
SEARCH DETAIL