ABSTRACT
Oxygen evolution reaction (OER) is the pivotal obstacle of water splitting for hydrogen production. Dual-sites catalysts (DSCs) are considered exceeding single-site catalysts due to the preternatural synergetic effects of two metals in OER. However, appointing the specific spatial configuration of dual-sites toward more efficient catalysis still remains a challenge. Herein, we constructed two configurations of Fe-Co dual-sites: stereo Fe-Co sites (stereo-Fe-Co DSC) and planar Fe-Co sites (planar-Fe-Co DSC). Remarkably, the planar-Fe-Co DSC has excellent OER performance superior to stereo-Fe-Co DSC. DFT calculations and experiments including isotope differential electrochemical mass spectrometry, in situ infrared spectroscopy, and in situ Raman reveal the *O intermediates can be directly coupled to form *O-O* rather than *OOH by both the DSCs, which could overcome the limitation of four electron transfer steps in OER. Especially, the proper Fe-Co distance and steric direction of the planar-Fe-Co benefit the cooperation of dual sites to dehydrogenate intermediates into *O-O* than stereo-Fe-Co in the rate-determining step. This work provides valuable insights and support for further research and development of OER dual-site catalysts.
ABSTRACT
Cancer cells undergo metabolic reprogramming that is intricately linked to malignancy. Protein acylations are especially responsive to metabolic changes, influencing signal transduction pathways and fostering cell proliferation. However, as a novel type of acylations, the involvement of malonylation in cancer remains poorly understood. In this study, we observed a significant reduction in malonyl-CoA levels in hepatocellular carcinoma (HCC), which correlated with a global decrease in malonylation. Subsequent nuclear malonylome analysis unveiled nucleolin (NCL) malonylation, which was notably enhanced in HCC biopsies. we demonstrated that NCL undergoes malonylation at lysine residues 124 and 398. This modification triggers the translocation of NCL from the nucleolus to nucleoplasm and cytoplasm, binding to AKT mRNA, and promoting AKT translation in HCC. Silencing AKT expression markedly attenuated HCC cell proliferation driven by NCL malonylation. These findings collectively highlight nuclear signaling in modulating AKT expression, suggesting NCL malonylation as a novel mechanism through which cancer cells drive cell proliferation.
ABSTRACT
Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.
Subject(s)
Cell Wall , Host-Parasite Interactions , Plant Tumors , Wasps , Animals , Cell Wall/metabolism , Wasps/physiology , Plant Tumors/parasitology , Quercus/metabolism , Quercus/parasitology , Plant Leaves/metabolism , Plant Leaves/parasitology , Lignin/metabolismABSTRACT
Hyperactivated glycolysis is a metabolic hallmark of most cancer cells. Although sporadic information has revealed that glycolytic metabolites possess nonmetabolic functions as signaling molecules, how these metabolites interact with and functionally regulate their binding targets remains largely elusive. Here, we introduce a target-responsive accessibility profiling (TRAP) approach that measures changes in ligand binding-induced accessibility for target identification by globally labeling reactive proteinaceous lysines. With TRAP, we mapped 913 responsive target candidates and 2,487 interactions for 10 major glycolytic metabolites in a model cancer cell line. The wide targetome depicted by TRAP unveils diverse regulatory modalities of glycolytic metabolites, and these modalities involve direct perturbation of enzymes in carbohydrate metabolism, intervention of an orphan transcriptional protein's activity and modulation of targetome-level acetylation. These results further our knowledge of how glycolysis orchestrates signaling pathways in cancer cells to support their survival, and inspire exploitation of the glycolytic targetome for cancer therapy.
Subject(s)
Biochemical Phenomena , Neoplasms , Humans , Glycolysis , Neoplasms/metabolism , Signal Transduction , Cell LineABSTRACT
This work presents a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas-nanopipette nano-electrochemistry (Cas = CRISPR-associated proteins) capable of ultrasensitive microRNA detection. Nanoconfinement of the CRISPR/Cas13a within a nanopipette leads to a high catalytic efficacy of ca. 169 times higher than that in bulk electrolyte, contributing to the amplified electrochemical responses. CRISPR/Cas13a-enabled detection of representative microRNA-25 achieves a low limit of detection down to 10 aM. Practical application of this method is further demonstrated for single-cell and real human serum detection. Its general applicability is validated by addressing microRNA-141 and the SARS-CoV-2 RNA gene fragment. This work introduces a new CRISPR/Cas-empowered nanotechnology for ultrasensitive nano-electrochemistry and bioanalysis.
Subject(s)
MicroRNAs , Nanopores , Humans , MicroRNAs/genetics , MicroRNAs/analysis , CRISPR-Cas Systems/genetics , RNA, ViralABSTRACT
Elaeagnus mollis is an important newly developing woody oil plant species and the vitamin E (VitE) content in its kernel oil is relatively high. In the present study, the VitE component content and functional genes involving in VitE biosynthesis in E. mollis kernel at different developmental stage were investigated. The VitE content increased with kernel development, reaching up to ~ 7.96Ā mg/g oil in kernel mature stage. The content of tocopherol was much higher than that of tocotrienol and ĆĀ³-tocopherol became the dominant component. E. mollis kernel extracts had relatively strong antioxidant capacity. We identified 17 genes (16 VTEs and 1 homogentisic acid geranylgeranyl transferase (HGGT)) directly involving in VitE biosynthesis in RNA-Seq data. Phylogenetic and qRT-PCR results indicated that the annotation and reliability of the RNA-Seq were accurate. Transient overexpression of EmVTE3 and EmWRKY13 in tobacoo leaves increased and decreased the VitE content to 192.18 and 118.29Ā Āµg/g, respectively. Weighted gene co-expression analysis elucidated that the blue module showed significant correlation with tocopherol content. Co-expression network analysis revealed that 2-methyl-6-phytobenzoquinone methyltransferase (MPBQ-MT/VTE3) played a vital role and EmWRKY13 may be a key negative regulator in E. mollis VitE biosynthesis. This study not only revealed the traditional VitE biosynthesis pathway in E. mollis, but also set a solid foundation for future genetic breeding of this species.
Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Vitamin E , Vitamin E/biosynthesis , Vitamin E/metabolism , Vitamin E/analogs & derivatives , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Genes, Plant , Seeds/genetics , Seeds/metabolism , Antioxidants/metabolismABSTRACT
Modern theories of phase transitions and scale invariance are rooted in path integral formulation and renormalization groups (RGs). Despite the applicability of these approaches in simple systems with only pairwise interactions, they are less effective in complex systems with undecomposable high-order interactions (i.e. interactions among arbitrary sets of units). To precisely characterize the universality of high-order interacting systems, we propose a simplex path integral and a simplex RG (SRG) as the generalizations of classic approaches to arbitrary high-order and heterogeneous interactions. We first formalize the trajectories of units governed by high-order interactions to define path integrals on corresponding simplices based on a high-order propagator. Then, we develop a method to integrate out short-range high-order interactions in the momentum space, accompanied by a coarse graining procedure functioning on the simplex structure generated by high-order interactions. The proposed SRG, equipped with a divide-and-conquer framework, can deal with the absence of ergodicity arising from the sparse distribution of high-order interactions and can renormalize a system with intertwined high-order interactions at thep-order according to its properties at theq-order (pĆ¢Ā©Ā½q). The associated scaling relation and its corollaries provide support to differentiate among scale-invariant, weakly scale-invariant, and scale-dependent systems across different orders. We validate our theory in multi-order scale-invariance verification, topological invariance discovery, organizational structure identification, and information bottleneck analysis. These experiments demonstrate the capability of our theory to identify intrinsic statistical and topological properties of high-order interacting systems during system reduction.
ABSTRACT
The early detection of nonalcoholic fatty liver disease (NAFLD) through bioluminescent probes is of great significance. However, there remains a challenge to apply them in nontransgenic natural animals due to the lack of exogenous luciferase. To address this issue, we herein report a new strategy for in situ monitoring of endogenous hydrogen sulfide (H2S) in the liver of NAFLD mice by leveraging a H2S-responsive bioluminescent probe (H-Luc) combined with firefly luciferase (fLuc) mRNA delivery. The probe H-Luc was created by installing a H2S recognition moiety, 2,4-dinitrophenol, onto the luciferase substrate (d-luciferin), which is allowed to release cage-free d-luciferin in the presence of H2S via a nucleophilic aromatic substitution reaction. In the meantime, the intracellular luciferase was introduced by lipid nanoparticle (LNP)-mediated fLuc mRNA delivery, rendering it suitable for bioluminescence (BL) imaging in vitro and in vivo. Based on this luciferase-luciferin system, the endogenous H2S could be sensitively and selectively detected in living cells, showing a low limit of detection (LOD) value of 0.72 ĀµM. More importantly, after systematic administration of fLuc mRNA-loaded LNPs in vivo, H-Luc was able to successfully monitor the endogenous H2S levels in the NAFLD mouse model for the first time, displaying a 28-fold higher bioluminescence intensity than that in the liver of normal mice. We believe that this strategy may shed new light on the diagnosis of inflammatory liver disease, further elucidating the roles of H2S.
Subject(s)
Hydrogen Sulfide , Luciferases, Firefly , Luminescent Measurements , Non-alcoholic Fatty Liver Disease , RNA, Messenger , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/analysis , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Mice , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Humans , Luminescent Agents/chemistry , Nanoparticles/chemistry , Mice, Inbred C57BLABSTRACT
The parallel double-stranded DNA (dsDNA) demonstrates potential utility in molecular biology, diagnosis, therapy, and molecular assembly. However, techniques for the characterization of parallel dsDNA are limited. Here, we demonstrate that a series of intensive characteristic Raman bands of three parallel dsDNAs, which are stabilized by reverse Hoogsteen A+Ā·A+ base pairs or hemiprotonated C+Ā·C, GĀ·G minor groove edge, Hoogsteen AĀ·A base pairs, or Hoogsteen TĀ·A, C+Ā·G base pairs, have been observed by surface-enhanced Raman spectroscopy (SERS) when the gold nanoparticles modified by bromine and magnesium ions (Au BMNPs) were used as substrates. The featured bands can not only accurately discriminate parallel dsDNA from antiparallel one but also identify the strand orientation within dsDNA. The proposed approach will have a significant impact on DNA analysis, especially in the detection and differentiation of various DNA conformations.
Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Spectrum Analysis, Raman , Bromides , Metal Nanoparticles/chemistry , DNA/chemistryABSTRACT
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease, whose etiology is intimately related to the overproduction of hypochlorous acid (HClO). Optical monitoring of HClO in the living body favors real-time diagnosis of inflammatory diseases. However, HClO-activated near-infrared (NIR) fluorescent probes with rapid response and high inflammatory cell uptake are still lacking. Herein, we report an activatable acceptor-π-acceptor (A-π-A)-type NIR fluorescent probe (Cy-DM) bearing two d-mannosamine groups for the sensitive detection of HClO in early IBD and stool testing. Once reacted with HClO, nonfluorescent Cy-DM could be turned on within 2 s by generating a donor-π-acceptor (D-π-A) structure due to the enhanced intramolecular charge transfer mechanism, showing intense NIR fluorescence emission at 700 nm and a large Stokes shift of 115 nm. Moreover, it was able to sensitively and selectively image exogenous and endogenous HClO in the lysosomes of living cells with a detection limit of 0.84 ĀµM. More importantly, because of the d-mannosamine modification, Cy-DM was efficiently taken up by inflammatory cells in the intestine after intravenous administration, allowing noninvasive visualization of endogenous HClO in a lipopolysaccharide-induced IBD mouse model with a high fluorescence contrast of 6.8/1. In addition, water-soluble Cy-DM has also been successfully applied in ex vivo optical fecal analysis, exhibiting a 3.4-fold higher fluorescence intensity in the feces excreted by IBD mice. We believe that Cy-DM is promising as an invaluable tool for rapid diagnosis of HClO-related diseases as well as stool testing.
Subject(s)
Feces , Fluorescent Dyes , Hypochlorous Acid , Inflammatory Bowel Diseases , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Hypochlorous Acid/analysis , Hypochlorous Acid/metabolism , Inflammatory Bowel Diseases/diagnostic imaging , Animals , Feces/chemistry , Mice , Humans , Optical Imaging , Infrared RaysABSTRACT
Direct single-cell caspase-3 (Casp-3) analysis has remained challenging. A study of single-cell Casp-3 could contribute to revealing the fundamental pathogenic mechanisms in Casp-3-associated diseases. Here, a biomimetic nanochannel capable of single-cell sampling and ionic detection of intracellular Casp-3 is devised, which is established upon the installment of target-specific organic molecules (luc-DEVD) within the orifice of a glass nanopipette. The specific cleavage of luc-DEVD by Casp-3 could induce changes of inner-surface chemical groups and charge properties, thus altering the ionic response of the biomimetic nanochannel for direct Casp-3 detection. The practical applicability of this biomimetic nanochannel is confirmed by probing intracellular Casp-3 fluctuation upon drug stimulation and quantifying the Casp-3 evolution during induced apoptosis. This work realizes ionic single-cell Casp-3 analysis and provides a different perspective for single-cell protein analysis.
Subject(s)
Apoptosis , Biomimetics , Caspase 3/metabolism , Apoptosis/physiologyABSTRACT
Liquid biopsy is of great significance in tumor early diagnosis and treatment stratification. PD-L1-positive small extracellular vesicles (PD-L1+ sEVs) are closely related to tumor growth and immunotherapy response, which are considered valuable liquid biopsy biomarkers. In contrast to conventional in vitro detection, in vivo detection has the ability to improve the detection efficiency and enable continuous or real-time dynamic monitoring. However, in vivo detection of PD-L1+ sEVs has multiple difficulties, such as high cell background, complex blood environments, and lack of a specific and stable detection method. Herein, the in vivo detection of PD-L1+ sEVs method was constructed, which efficiently separated sEVs based on the microfluidic device and quantitatively analyzed PD-L1+ sEVs by aptamer recognition and hybridization chain reaction. The concentration of PD-L1+ sEVs was continuously monitored, and significant differences at different stages of tumor as well as a correlation with tumor volume were found. Diseased and healthy individuals could also be effectively distinguished based on the concentration of PD-L1+ sEVs. The method with good stability, biocompatibility, and detection performance provided a powerful means for in vivo detection of PD-L1+ sEVs, contributing to the clinical diagnosis and treatment of tumor.
Subject(s)
Extracellular Vesicles , Neoplasms , Humans , B7-H1 Antigen , Neoplasms/diagnosis , Liquid Biopsy , Lab-On-A-Chip DevicesABSTRACT
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
Subject(s)
Hydro-Lyases , Lignin , Populus , Populus/genetics , Populus/metabolism , Populus/enzymology , Lignin/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Xylem/geneticsABSTRACT
Obtaining a holistic understanding of the impacts of atmospheric nitrogen deposition on multiple ecosystem services of forest is essential for developing comprehensive and sustainable strategies, particularly in heavy N deposition regions such as subtropical China. However, such impacts remain incompletely understood, with most previous studies focus on individual ecosystem function or service via understory N addition experiments. To address this knowledge gap, we quantified the effects of over-canopy and understory N additions on multiple ecosystem services based on a 7-year large-scale field experiment in a typical subtropical forest. Our results showed continued over-canopy N addition with 50 kg ha-1 year-1 over a period of 4-7 years significantly increased plant nutrient retention, but did not affect the services of soil nutrient accumulation, water yield, C sequestration (in plants and soil), or oxygen release. There were trade-offs between the soil and plant on providing the services of nutrient accumulation/retention and C sequestration under over-canopy N addition. However, without uptake and retention of tree canopy, the trade-off between soil and plant were more weaken under the understory N addition with 50 kg ha-1 year-1 , and their relationships were even synergetic under the understory N addition with 25 kg ha-1 year-1 . The results suggest that understory N addition cannot accurately simulate the effects of atmospheric N deposition on multiple services, along with mutual relationships. Interestingly, the services of plant N, P retention, and C sequestration exhibited a synergetic increase under the over-canopy N addition but a decrease under the understory N addition. Our results also found tree layer plays a primary role in providing plant nutrient retention service and is sensitive to atmospheric N deposition. Further studies are needed to investigate the generalized effects of forest canopy processes on alleviating the threaten of global change factors in different forest ecosystems.
Subject(s)
Ecosystem , Nitrogen , Nitrogen/analysis , Forests , Trees , Plants , SoilABSTRACT
Phosphodiesterase 8 (PDE8), as a member of PDE superfamily, specifically promotes the hydrolysis and degradation of intracellular cyclic adenosine monophosphate (cAMP), which may be associated with pathogenesis of Alzheimer's disease (AD). However, little is currently known about potential role in the central nervous system (CNS). Here we investigated the distribution and expression of PDE8 in brain of mouse, which we believe can provide evidence for studying the role of PDE8 in CNS and the relationship between PDE8 and AD. Here, C57BL/6J mice were used to observe the distribution patterns of two subtypes of PDE8, PDE8A and PDE8B, in different sexes in vivo by western blot (WB). Meanwhile, C57BL/6J mice were also used to demonstrate the distribution pattern of PDE8 in selected brain regions and localization in neural cells by WB and multiplex immunofluorescence staining. Furthermore, the triple transgenic (3ĆTg-AD) mice and wild type (WT) mice of different ages were used to investigate the changes of PDE8 expression in the hippocampus and cerebral cortex during the progression of AD. PDE8 was found to be widely expressed in multiple tissues and organs including heart, kidney, stomach, brain, and liver, spleen, intestines, and uterus, with differences in expression levels between the two subtypes of PDE8A and PDE8B, as well as two sexes. Meanwhile, PDE8 was widely distributed in the brain, especially in areas closely related to cognitive function such as cerebellum, striatum, amygdala, cerebral cortex, and hippocampus, without differences between sexes. Furthermore, PDE8A was found to be expressed in neuronal cells, microglia and astrocytes, while PDE8B is only expressed in neuronal cells and microglia. PDE8A expression in the hippocampus of both female and male 3ĆTg-AD mice was gradually increased with ages and PDE8B expression was upregulated only in cerebral cortex of female 3ĆTg-AD mice with ages. However, the expression of PDE8A and PDE8B was apparently increased in both cerebral cortex and hippocampus in both female and male 10-month-old 3ĆTg-AD mice compared WT mice. These results suggest that PDE8 may be associated with the progression of AD and is a potential target for its prevention and treatment in the future.
Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases , Alzheimer Disease , Mice, Inbred C57BL , Mice, Transgenic , Animals , Female , Male , Mice , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Alzheimer Disease/metabolism , Brain/metabolism , Hippocampus/metabolismABSTRACT
Gold nanorods (Au NRs) are a valuable photothermal nanomaterial for tumor therapy. However, when treated with Au NRs for photothermal therapy, the expression of heat shock proteins in tumors will increase, which will induce heat resistance in tumor cells and reduce the photothermal therapeutic effect of Au NRs. By RNA interference, the expression of heat shock proteins would be effectively inhibited to improve the efficasy of tumor photothermal therapy. However, deep and noninvasive tissue penetration remains a great obstacle to applying siRNA successfully. Thus, the nanoplatform AGC/HSP-70 siRNA was designed for enhanced photothermal tumor therapy by RNA interference. In the AGC/HSP-70 siRNA complex, the Au-S bond modified the matrix metalloproteinase-2 (MMP-2)-sensitive peptide GPLGLAG on the surface of gold nanorods. Moreover, the natural basic polysaccharide (chitosan) was reacted with the peptide by an amide bond for delivering heat shock protein 70 silencing siRNA (HSP-70 siRNA). Modifying the MMP-2-sensitive linker could cause more Au NRs to accumulate in tumors to exert a photothermal effect and promote the penetration of HSP-70 siRNA and chitosan complexes into deep tumor tissues. In vitro experiments indicated that the enzymolysis of the MMP-2-sensitive linker for AGC/HSP-70 siRNA could promote the cellular uptake and perinuclear distribution of HSP-70 siRNA in tumor cells, which may be due to the smaller size and positive electricity of the complexes. All of these results ensured the efficient gene silencing effect of HSP-70 siRNA to enhance the photothermal therapeutic effect of Au NRs in tumor tissues, as demonstrated by the gene silencing and cellular apoptotic experiments. In vivo experiments further proved that the AGC/HSP-70 siRNA nanoplatform efficiently improved the photothermal effect of Au NRs. In summary, this work proved that AGC/HSP-70 siRNA is a promising drug delivery strategy for enhancing the photothermal therapy of tumors by regulating the photothermal sensitivity of deep tumor cells as well as retaining more Au NRs in tumor tissues, and also provides a novel strategy for tumor photothermal therapy.
ABSTRACT
Theoretical modeling is proposed to predict the maximum spreading of water-based ferrofluid droplets impacting upon dry surfaces influenced by a vertical magnetic field. Constructed on the principle of energy balance, this model demonstrates excellent agreement with numerical findings across various impact velocities, contact angles, and magnetic strengths. Notably, as magnetic field strength escalates, magnetic forces prevail over viscous and capillary forces, exerting a significant influence on spreading dynamics and diminishing the maximum spreading diameter of ferrofluid droplets if the impacting shape is spherical. However, for freely falling droplets, the shape becomes prolate before impacting and the promoted surface energy balances the magnetic inhibitory effect on droplet spreading, thus resulting in an almost unchanged maximum spreading diameter. By postulating complete conversion of initial kinetic energy into magnetic energy, a scaling law is derived for maximum spreading diameter under extremely high magnetic fields. Further interpolation with viscous dissipation and capillary effects enables universal rescaling under diverse impact conditions. Through comparison with numerical outcomes, the validity of our theoretical model is affirmed, establishing a balanced formula between distinct energy components for predicting maximum spreading diameter of ferrofluid droplets accurately.
ABSTRACT
Taxol is widely used in the treatment of nasopharyngeal carcinoma (NPC); nevertheless, the acquired resistance of NPC to Taxol remains one of the major obstacles in clinical treatment. In this study, we aimed to investigate the role and mechanism of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in Taxol resistance of NPC. Taxol-resistant NPC cell lines were established by exposing to gradually increased concentration of Taxol. Relative mRNA and protein levels were tested using qRT-PCR and western blot, respectively. NPC cell viability and apoptosis were assessed by cell counting kit-8 and flow cytometry analysis, respectively. Cell migration and invasion capacities were measured using transwell assay. Interaction between IGF2BP1 and AKT2 was examined by RNA immunoprecipitation assay. The N6-methyladenosine level of AKT2 was tested using methylated RNA immunoprecipitation-qPCR. IGF2BP1 expression was enhanced in Taxol-resistant NPC cell lines. Knockdown of IGF2BP1 strikingly enhanced the sensitivity of NPC cells to Taxol and repressed the migration and invasion of NPC cells. Mechanistically, IGF2BP1 elevated the expression of AKT2 by increasing its mRNA stability. Furthermore, overexpression of AKT2 reversed the inhibitory roles of IGF2BP1 silence on Taxol resistance and metastasis. Our results indicated that IGF2BP1 knockdown enhanced the sensitivity of NPC cells to Taxol by decreasing the expression of AKT2, implying that IGF2BP1 might be promising candidate target for NPC treatment.
Subject(s)
Apoptosis , Cell Movement , Drug Resistance, Neoplasm , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Paclitaxel , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Humans , Paclitaxel/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Drug Resistance, Neoplasm/drug effects , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/genetics , Cell Movement/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Up-Regulation , Cell Proliferation/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology , Gene Expression Regulation, Neoplastic/drug effectsABSTRACT
Atherosclerosis is a chronic inflammatory vascular disease characterized by lipid metabolism disorder and lipid accumulation. Equisetin (EQST) is a hemiterpene compound isolated from fungus of marine sponge origin, which has antibacterial, anti-inflammatory, lipid-lowering, and weight loss effects. Whether EQST has anti-atherosclerotic activity has not been reported. In this study, we revealed that EQST displayed anti- atherosclerosis effects through inhibiting macrophage inflammatory response, lipid uptake and foam cell formation in vitro, and finally ameliorated high-fat diet (HFD)-induced atherosclerosis in AopE-/- mice in vivo. Mechanistically, EQST directly bound to STAT3 with high-affinity by forming hydrophobic bonds at GLN247 and GLN326 residues, as well as hydrogen bonds at ARG325 and THR346 residues. EQST interacted with STAT3 physically, and functionally inhibited the transcription activity of STAT3, thereby regulating atherosclerosis. Therefore, these results supports EQST as a candidate for developing anti-atherosclerosis therapeutic agent.
Subject(s)
Atherosclerosis , Mice, Inbred C57BL , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , Animals , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Mice , Male , Diet, High-Fat/adverse effects , Humans , RAW 264.7 Cells , Mice, Knockout , Protein Binding , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Foam Cells/drug effects , Foam Cells/metabolismABSTRACT
Dendrobium officinale Kinura et Migo (DOKM) has a variety of medicinal applications; however, its ability to promote wound healing has not been previously reported. The purpose of this study is to investigate the proliferative phase of the wound-healing effect of DOKM glycoprotein (DOKMG) in rats and to elucidate its mechanism of action in vitro. In the present study, the ointment mixture containing DOKMG was applied to the dorsal skin wounds of the full-thickness skin excision rat model, and the results showed that the wound healing speed was faster in the proliferative phase than vaseline. Histological analysis demonstrates that DOKMG promoted the re-epithelialization of wound skin. Immunofluorescence staining and quantitative polymerase chain reaction assays revealed that DOKMG promotes the secretion of Fibronectin and inhibits the secretion of Collagen IV during the granulation tissue formation period, indicating that DOKMG could accelerate the formation of granulation tissue by precisely regulating extracellular matrix (ECM) secretion. In addition, we demonstrated that DOKMG enhanced the migration and proliferation of fibroblast (3T6 cell) in two-dimensional trauma by regulating the secretion of ECM, via a mechanism that may implicate the AKT and JAK/STAT pathways under the control of epidermal growth factor receptor (EGFR) signalling. In summary, we have demonstrated that DOKMG promotes wound healing during the proliferative phase. Therefore, we suggest that DOKMG may have a potential therapeutic application for the treatment and management of cutaneous wounds.