Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nature ; 608(7922): 405-412, 2022 08.
Article in English | MEDLINE | ID: mdl-35922506

ABSTRACT

After cessation of blood flow or similar ischaemic exposures, deleterious molecular cascades commence in mammalian cells, eventually leading to their death1,2. Yet with targeted interventions, these processes can be mitigated or reversed, even minutes or hours post mortem, as also reported in the isolated porcine brain using BrainEx technology3. To date, translating single-organ interventions to intact, whole-body applications remains hampered by circulatory and multisystem physiological challenges. Here we describe OrganEx, an adaptation of the BrainEx extracorporeal pulsatile-perfusion system and cytoprotective perfusate for porcine whole-body settings. After 1 h of warm ischaemia, OrganEx application preserved tissue integrity, decreased cell death and restored selected molecular and cellular processes across multiple vital organs. Commensurately, single-nucleus transcriptomic analysis revealed organ- and cell-type-specific gene expression patterns that are reflective of specific molecular and cellular repair processes. Our analysis comprises a comprehensive resource of cell-type-specific changes during defined ischaemic intervals and perfusion interventions spanning multiple organs, and it reveals an underappreciated potential for cellular recovery after prolonged whole-body warm ischaemia in a large mammal.


Subject(s)
Cell Survival , Cytoprotection , Perfusion , Swine , Warm Ischemia , Animals , Cell Death , Gene Expression Profiling , Ischemia/metabolism , Ischemia/pathology , Ischemia/prevention & control , Organ Specificity , Perfusion/methods , Swine/anatomy & histology
2.
Am J Transplant ; 23(2): 165-170, 2023 02.
Article in English | MEDLINE | ID: mdl-36695696

ABSTRACT

For decades, transplantation has been a life-saving treatment for those fortunate enough to gain access. Nevertheless, many patients die waiting for an organ and countless more never make it onto the waitlist because of a shortage of donor organs. Concurrently, thousands of donated organs are declined for transplant each year because of concerns about poor outcomes post-transplant. The decline of any donated organ-even if medically justified-is tragic for both the donor family and potential recipients. In this Personal Viewpoint, we discuss the need for a new mindset in how we honor the gift of organ donation. We believe that the use of transplant-declined human organs in translational research has the potential to hasten breakthrough discoveries in a multitude of scientific and medical areas. More importantly, such breakthroughs will allow us to properly value every donated organ. We further discuss the many practical challenges that such research presents and offer some possible solutions based on experiences in our own research laboratories. Finally, we share our perspective on what we believe are the necessary next steps to ensure a future where every donated organ realizes its full potential to impact the lives of current and future patients.


Subject(s)
Organ Transplantation , Tissue and Organ Procurement , Humans , Tissue Donors , Waiting Lists
3.
Proc Natl Acad Sci U S A ; 117(7): 3502-3508, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015123

ABSTRACT

Accurate analysis of blood concentration and circulation half-life is an important consideration for any intravenously administered agent in preclinical development or for therapeutic application. However, the currently available tools to measure these parameters are laborious, expensive, and inefficient for handling multiple samples from complex multivariable experiments. Here we describe a robust high-throughput quantitative microscopy-based method to measure the blood concentration and circulation half-life of any fluorescently labeled agent using only a small (2 µL) amount of blood volume, enabling additional end-point measurements to be assessed in the same subject. To validate this method, we demonstrate its use to measure the circulation half-life in mice of two types of fluorescently labeled polymeric nanoparticles of different sizes and surface chemistries and of a much smaller fluorescently labeled monoclonal antibody. Furthermore, we demonstrate the improved accuracy of this method compared to previously described methods.


Subject(s)
Drug Monitoring/methods , High-Throughput Screening Assays/methods , Microscopy/methods , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Animals , Female , Half-Life , Humans , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry
4.
Am J Transplant ; 22(7): 1754-1759, 2022 07.
Article in English | MEDLINE | ID: mdl-35373446

ABSTRACT

Despite the profound shortage of organs available for transplant in the U.S., over 5,000 donated organs were declined for use in 2020. Many of these organs were declined due to donor comorbidities or preservation injuries that predispose grafts to rejection and loss. The risks of these poor outcomes can potentially be reduced by pre-transplant application of normothermic machine perfusion (NMP). To date, the clinical use of NMP has focused on extending preservation and improving organ assessment, but the opportunity for ex situ therapeutic delivery may be the most transformative aspect of this technology. In this Personal Viewpoint, we argue that the endothelial cells (ECs) that line the graft vasculature are an accessible, under-exploited, and attractive target for transplant therapeutics delivered during NMP. We further contend that molecularly targeted nanoparticles (NPs) represent a promising therapeutic vehicle particularly well-suited to NMP. However, to achieve this potential, we need to answer the following three key questions: (1) What EC sub-populations exist within an organ? (2) How can these cells be accessed? (3) And most important, how can preferential retention of NPs by the cells of interest be maximized? Here we argue for creating an EC-targeting atlas as a body of knowledge that answers these questions.


Subject(s)
Endothelial Cells , Organ Preservation , Allografts , Humans , Organ Preservation/methods , Perfusion/methods , Tissue Donors
5.
Am J Transplant ; 22(5): 1293-1298, 2022 05.
Article in English | MEDLINE | ID: mdl-35224837

ABSTRACT

Patients undergoing organ transplantation transition from one life-altering issue (organ dysfunction) to a lifelong commitment-immunosuppression. Regimens of immunosuppressive agents (ISAs) come with significant side effects and comorbidities. Recently, the use of nanoparticles (NPs) as a solution to the problems associated with the long-term and systemic use of ISAs in transplantation has emerged. This minireview describes the role of NPs in organ transplantation and discusses obstacles to clinical implementation and pathways to clinical translation.


Subject(s)
Immunosuppressive Agents , Organ Transplantation , Graft Rejection/drug therapy , Graft Rejection/prevention & control , Humans , Immune Tolerance , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use
6.
Biophys J ; 120(21): 4891-4902, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34529946

ABSTRACT

Immune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood. Previous results suggest that basic side chains present at the membrane interface on the Tim proteins might facilitate association with additional anionic lipids including but not necessarily limited to PS. We, therefore, performed a comparative quantitative analysis of the binding of the murine Tim1, Tim3, and Tim4, to synthetic anionic phospholipid membranes under physiologically relevant conditions. X-ray reflectivity and vesicle binding studies were used to compare the water-soluble domain of Tim3 with results previously obtained for Tim1 and Tim4. Although a calcium link was essential for all three proteins, the three homologs differed in how they balance the hydrophobic and electrostatic interactions driving membrane association. The proteins also varied in their sensing of phospholipid chain unsaturation and showed different degrees of cooperativity in their dependence on bilayer PS concentration. Surprisingly, trace amounts of anionic phosphatidic acid greatly strengthened the bilayer association of Tim3 and Tim4, but not Tim1. A novel mathematical model provided values for the binding parameters and illuminated the complex interplay among ligands. In conclusion, our results provide a quantitative description of the contrasting selectivity used by three Tim proteins in the recognition of phospholipids presented on target cell surfaces. This paradigm is generally applicable to the analysis of the binding of peripheral proteins to target membranes through the heterotropic cooperative interactions of multiple ligands.


Subject(s)
Membrane Proteins , Mucins , Animals , Hepatitis A Virus Cellular Receptor 1 , Membranes , Mice , Phosphatidylserines
7.
Am J Transplant ; 21(1): 161-173, 2021 01.
Article in English | MEDLINE | ID: mdl-32627324

ABSTRACT

Thousands of kidneys from higher-risk donors are discarded annually because of the increased likelihood of complications posttransplant. Given the severe organ shortage, there is a critical need to improve utilization of these organs. To this end, normothermic machine perfusion (NMP) has emerged as a platform for ex vivo assessment and potential repair of marginal organs. In a recent study of 8 transplant-declined human kidneys on NMP, we discovered microvascular obstructions that impaired microvascular blood flow. However, the nature and physiologic impact of these lesions were unknown. Here, in a study of 39 human kidneys, we have identified that prolonged cold storage of human kidneys induces accumulation of fibrinogen within tubular epithelium. Restoration of normoxic conditions-either ex vivo during NMP or in vivo following transplant-triggered intravascular release of fibrinogen correlating with red blood cell aggregation and microvascular plugging. Combined delivery of plasminogen and tissue plasminogen activator during NMP lysed the plugs leading to a significant reduction in markers of renal injury, improvement in indicators of renal function, and improved delivery of vascular-targeted nanoparticles. Our study suggests a new mechanism of cold storage injury in marginal organs and provides a simple treatment with immediate translational potential.


Subject(s)
Kidney Transplantation , Organ Preservation , Humans , Kidney , Kidney Transplantation/adverse effects , Perfusion , Tissue Plasminogen Activator
8.
Nano Lett ; 20(2): 1117-1123, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32003222

ABSTRACT

Endosomal escape is a key step for intracellular drug delivery of nucleic acids, but reliable and sensitive methods for its quantitation remain an unmet need. In order to rationally optimize the mRNA transfection efficiency of a library of polymeric materials, we designed a deactivated Renilla luciferase-derived molecular probe whose activity can be restored only in the cytosol. This probe can be coencapsulated with mRNA in the same delivery vehicle, thereby accurately measuring its endosomal escape efficiency. We examined a library of poly(amine-co-ester) (PACE) polymers with different end groups using this probe and observed a strong correlation between endosomal escape and transfection efficiency (R2 = 0.9334). In addition, we found that mRNA encapsulation efficiency and endosomal escape, but not uptake, were determinant factors for transfection efficiency. The polymers with high endosomal escape/transfection efficiency in vitro also showed good transfection efficiency in vivo, and mRNA expression was primarily observed in spleens after intravenous delivery. Together, our study suggests that the luciferase probe can be used as an effective tool to quantitate endosomal escape, which is essential for rational optimization of intracellular drug delivery systems.


Subject(s)
Gene Transfer Techniques , Luciferases, Renilla/genetics , Molecular Probes/genetics , RNA, Messenger/genetics , Cytosol/chemistry , Cytosol/drug effects , Gene Expression Regulation/genetics , Humans , Luciferases, Renilla/chemistry , Molecular Probes/chemistry , Nanoparticles/chemistry , Transfection/methods
9.
Biomacromolecules ; 20(9): 3385-3391, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31424203

ABSTRACT

Some synthetic polymers can block cell death when applied following an injury that would otherwise kill the cell. This cellular rescue occurs through interactions of the polymers with cell membranes. However, general principles for designing synthetic polymers to ensure strong, but nondisruptive, cell membrane targeting are not fully elucidated. Here, we tailored biomimetic phosphorylcholine-containing block copolymers to interact with cell membranes and determined their efficacy in blocking neuronal death following oxygen-glucose deprivation. By adjusting the hydrophilicity and membrane affinity of poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC)-based triblock copolymers, the surface active regime in which the copolymers function effectively as membrane-targeting cellular rescue agents was determined. We identified nonintrusive interactions between the polymer and the cell membrane that alter the collective dynamics of the membrane by inducing rigidification without disrupting lipid packing or membrane thickness. In general, our results open new avenues for biological applications of polyMPC-based polymers and provide an approach to designing membrane-targeting agents to block cell death after injury.


Subject(s)
Biocompatible Materials/pharmacology , Methacrylates/chemistry , Phosphorylcholine/analogs & derivatives , Polymers/chemistry , Biocompatible Materials/chemistry , Biomimetics/methods , Cell Death/drug effects , Cell Membrane/drug effects , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Methacrylates/pharmacology , Phosphorylcholine/chemistry , Phosphorylcholine/pharmacology , Polymers/pharmacology
10.
Am J Transplant ; 18(10): 2400-2408, 2018 10.
Article in English | MEDLINE | ID: mdl-29878499

ABSTRACT

Normothermic machine perfusion (NMP) is a technique that utilizes extracorporeal membrane oxygenation to recondition and repair kidneys at near body temperature prior to transplantation. The application of this new technology has been fueled by a significant increase in the use of the kidneys that were donated after cardiac death, which are more susceptible to ischemic injury. Preliminary results indicate that NMP itself may be able to repair marginal organs prior to transplantation. In addition, NMP serves as a platform for delivery of therapeutics. The isolated setting of NMP obviates problems of targeting a particular therapy to an intended organ and has the potential to reduce the harmful effects of systemic drug delivery. There are a number of emerging therapies that have shown promise in this platform. Nutrients, therapeutic gases, mesenchymal stromal cells, gene therapies, and nanoparticles, a newly explored modality, have been successfully delivered during NMP. These technologies may be effective at blocking multiple mechanisms of ischemia- reperfusion injury (IRI) and improving renal transplant outcomes. This review addresses the mechanisms of renal IRI, examines the potential for NMP as a platform for pretransplant allograft modulation, and discusses the introduction of various therapies in this setting.


Subject(s)
Kidney Transplantation , Kidney/blood supply , Organ Preservation/methods , Reperfusion Injury/prevention & control , Humans , Regeneration , Temperature
11.
Proc Natl Acad Sci U S A ; 112(48): E6597-605, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627251

ABSTRACT

Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic , Gene Targeting/methods , Oncogene Proteins, Fusion/genetics , RNA, Small Interfering/metabolism , Apoptosis , Base Sequence , Binding Sites , Cell Line, Tumor , Cell Survival , Drug Delivery Systems , HEK293 Cells , Humans , K562 Cells , Lactic Acid/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Nanoparticles , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , RNA Interference , RNA, Messenger/metabolism , Transfection
12.
Biophys J ; 113(7): 1505-1519, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28978444

ABSTRACT

The dynamic nature of lipid membranes presents significant challenges with respect to understanding the molecular basis of protein/membrane interactions. Consequently, there is relatively little known about the structural mechanisms by which membrane-binding proteins might distinguish subtle variations in lipid membrane composition and/or structure. We have previously developed a multidisciplinary approach that combines molecular dynamics simulation with interfacial x-ray scattering experiments to produce an atomistic model for phosphatidylserine recognition by the immune receptor Tim4. However, this approach requires a previously determined protein crystal structure in a membrane-bound conformation. Tim1, a Tim4 homolog with distinct differences in both immunological function and sensitivity to membrane composition, was crystalized in a closed-loop conformation that is unlikely to support membrane binding. Here we have used a previously described highly mobile membrane mimetic membrane in combination with a conventional lipid bilayer model to generate a membrane-bound configuration of Tim1 in silico. This refined structure provided a significantly improved fit of experimental x-ray reflectivity data. Moreover, the coupling of the x-ray reflectivity analysis with both highly mobile membrane mimetic membranes and conventional lipid bilayer molecular dynamics simulations yielded a dynamic model of phosphatidylserine membrane recognition by Tim1 with atomic-level detail. In addition to providing, to our knowledge, new insights into the molecular mechanisms that distinguish the various Tim receptors, these results demonstrate that in silico membrane-binding simulations can remove the requirement that the existing crystal structure be in the membrane-bound conformation for effective x-ray reflectivity analysis. Consequently, this refined methodology has the potential for much broader applicability with respect to defining the atomistic details of membrane-binding proteins.


Subject(s)
Hepatitis A Virus Cellular Receptor 1/chemistry , Lipid Bilayers/chemistry , Animals , Binding Sites , Cell Line , Hepatitis A Virus Cellular Receptor 1/metabolism , Lepidoptera , Mice , Molecular Dynamics Simulation , Phosphatidylserines/chemistry , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , X-Ray Diffraction
13.
Nanomedicine ; 13(6): 1863-1867, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28412144

ABSTRACT

Nanoparticles (NPs) are potential drug delivery vehicles for treatment of a broad range of diseases. Intravenous (IV) administration, the most common form of delivery, is relatively non-invasive and provides (in theory) access throughout the circulatory system. However, in practice, many IV injected NPs are quickly eliminated by specialized phagocytes in the liver and spleen. Consequently, new materials have been developed with the capacity to significantly extend the circulating half-life of IV administered NPs. Unfortunately, current procedures for measuring circulation half-lives are often expensive, time consuming, and can require large blood volumes that are not compatible with mouse models of disease. Here we describe a simple and reliable procedure for measuring circulation half-life utilizing quantitative microscopy. This method requires only 2µL of blood and minimal sample preparation, yet provides robust quantitative results.


Subject(s)
Drug Delivery Systems , Microscopy/methods , Nanoparticles/administration & dosage , Nanoparticles/analysis , Animals , Blood Volume , Female , Half-Life , Mice , Mice, SCID , Microscopy/instrumentation , Particle Size
14.
Proc Natl Acad Sci U S A ; 111(15): E1463-72, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24706780

ABSTRACT

Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.


Subject(s)
Immunity, Cellular/immunology , Membrane Proteins/immunology , Models, Molecular , Phosphatidylserines/immunology , Protein Conformation , T-Lymphocytes/immunology , Animals , Hepatitis A Virus Cellular Receptor 1 , Hepatitis A Virus Cellular Receptor 2 , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Models, Immunological , Molecular Dynamics Simulation , Protein Binding , Receptors, Virus/immunology , Scattering, Radiation , Transport Vesicles/immunology , Tryptophan/metabolism
15.
Front Immunol ; 13: 830992, 2022.
Article in English | MEDLINE | ID: mdl-35432296

ABSTRACT

The current obesity epidemic has caused a significant decline in the health of our donor population. Organs from obese deceased donors are more prone to ischemia reperfusion injury resulting from organ preservation. As a consequence, these donors are more likely to be discarded under the assumption that nothing can be done to make them viable for transplant. Our current methods of organ preservation-which remain relatively unchanged over the last ~40 years-were originally adopted in the context of a much healthier donor population. But methods that are suitable for healthier deceased donors are likely not optimal for organs from obese donors. Naturally occurring models of acute obesity and fasting in hibernating mammals demonstrate that obesity and resilience to cold preservation-like conditions are not mutually exclusive. Moreover, recent advances in our understanding of the metabolic dysfunction that underlies obesity suggest that it may be possible to improve the resilience of organs from obese deceased donors. In this mini-review, we explore how we might adapt our current practice of organ preservation to better suit the current reality of our deceased donor population.


Subject(s)
Pandemics , Reperfusion Injury , Animals , Humans , Mammals , Obesity/epidemiology , Organ Preservation/methods , Pandemics/prevention & control , Reperfusion Injury/metabolism , Tissue Donors
16.
Bioeng Transl Med ; 7(1): e10242, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35111944

ABSTRACT

In preclinical research, histological analysis of tissue samples is often limited to qualitative or semiquantitative scoring assessments. The reliability of this analysis can be impaired by the subjectivity of these approaches, even when read by experienced pathologists. Furthermore, the laborious nature of manual image assessments often leads to the analysis being restricted to a relatively small number of images that may not accurately represent the whole sample. Thus, there is a clear need for automated image analysis tools that can provide robust and rapid quantification of histologic samples from paraffin-embedded or cryopreserved tissues. To address this need, we have developed a color image analysis algorithm (DigiPath) to quantify distinct color features in histologic sections. We demonstrate the utility of this tool across multiple types of tissue samples and pathologic features, and compare results from our program to other quantitative approaches such as color thresholding and hand tracing. We believe this tool will enable more thorough and reliable characterization of histological samples to facilitate better rigor and reproducibility in tissue-based analyses.

17.
Bioeng Transl Med ; 5(2): e10154, 2020 May.
Article in English | MEDLINE | ID: mdl-32440561

ABSTRACT

Endothelial cells play a central role in the process of inflammation. Their biologic relevance, as well as their accessibility to IV injected therapeutics, make them a strong candidate for treatment with molecularly-targeted nanomedicines. Typically, the properties of targeted nanomedicines are first optimized in vitro in cell culture and then in vivo in rodent models. While cultured cells are readily available for study, results obtained from isolated cells can lack relevance to more complex in vivo environments. On the other hand, the quantitative assays needed to determine the impact of nanoparticle design on targeting efficacy are difficult to perform in animal models. Moreover, results from animal models often translate poorly to human systems. To address the need for an improved testing platform, we developed an isolated vessel perfusion system to enable dynamic and quantitative study of vascular-targeted nanomedicines in readily obtainable human vessels isolated from umbilical cords or placenta. We show that this platform technology enables the evaluation of parameters that are critical to targeting efficacy (including flow rate, selection of targeting molecule, and temperature). Furthermore, biologic replicates can be easily produced by evaluating multiple vessel segments from the same human donor in independent, modular chambers. The chambers can also be adapted to house vessels of a variety of sizes, allowing for the subsequent study of vessel segments in vivo following transplantation into immunodeficient mice. We believe this perfusion system can help to address long-standing issues in endothelial targeted nanomedicines and thereby enable more effective clinical translation.

18.
NPJ Regen Med ; 5: 1, 2020.
Article in English | MEDLINE | ID: mdl-31934351

ABSTRACT

Formation of a perfusable microvascular network (µVN) is critical for tissue engineering of solid organs. Stromal cells can support endothelial cell (EC) self-assembly into a µVN, but distinct stromal cell populations may play different roles in this process. Here we describe the differential effects that two widely used stromal cell populations, fibroblasts (FBs) and pericytes (PCs), have on µVN formation. We examined the effects of adding defined stromal cell populations on the self-assembly of ECs derived from human endothelial colony forming cells (ECFCs) into perfusable µVNs in fibrin gels cast within a microfluidic chamber. ECs alone failed to fully assemble a perfusable µVN. Human lung FBs stimulated the formation of EC-lined µVNs within microfluidic devices. RNA-seq analysis suggested that FBs produce high levels of hepatocyte growth factor (HGF). Addition of recombinant HGF improved while the c-MET inhibitor, Capmatinib (INCB28060), reduced µVN formation within devices. Human placental PCs could not substitute for FBs, but in the presence of FBs, PCs closely associated with ECs, formed a common basement membrane, extended microfilaments intercellularly, and reduced microvessel diameters. Different stromal cell types provide different functions in microvessel assembly by ECs. FBs support µVN formation by providing paracrine growth factors whereas PCs directly interact with ECs to modify microvascular morphology.

19.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31527312

ABSTRACT

Tissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells. Like other ECs, these cells can express both class I and class II major histocompatibility complex (MHC) molecules, bind donor-specific antibody (DSA), activate alloreactive T effector memory cells, and initiate rejection in the absence of donor leukocytes. CRISPR/Cas9-mediated dual ablation of ß2-microglobulin and class II transactivator (CIITA) in HECFC-derived ECs eliminates both class I and II MHC expression while retaining EC functions and vasculogenic potential. Importantly, dually ablated ECs no longer bind human DSA or activate allogeneic CD4+ effector memory T cells and are resistant to killing by CD8+ alloreactive cytotoxic T lymphocytes in vitro and in vivo. Despite absent class I MHC molecules, these ECs do not activate or elicit cytotoxic activity from allogeneic natural killer cells. These data suggest that HECFC-derived ECs lacking MHC molecule expression can be utilized for engineering vascularized grafts that evade allorejection.


Subject(s)
Allografts/immunology , Endothelial Cells/immunology , Graft Rejection/prevention & control , Nuclear Proteins/genetics , Tissue Engineering/methods , Trans-Activators/genetics , beta 2-Microglobulin/genetics , Allografts/blood supply , Allografts/supply & distribution , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems/genetics , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Progenitor Cells , Female , Fetal Blood/cytology , Gene Knockout Techniques , Graft Rejection/blood , Graft Rejection/immunology , Healthy Volunteers , Humans , Isoantibodies/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/genetics , Mice , Microvessels/cytology , Microvessels/immunology , Microvessels/transplantation , Nuclear Proteins/immunology , Organ Transplantation/adverse effects , Organ Transplantation/methods , Primary Cell Culture , Trans-Activators/immunology , beta 2-Microglobulin/immunology
20.
J Control Release ; 304: 259-267, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31054286

ABSTRACT

Degradable poly(amine-co-ester) (PACE) terpolymers hold tremendous promise for siRNA delivery because these materials can be formulated into delivery vehicles with highly efficient siRNA encapsulation, providing effective knockdown with low toxicity. Here, we demonstrate that PACE nanoparticles (NPs) provide substantial protein knockdown in human embryonic kidney cells (HEK293) and hard-to-transfect primary human umbilical vein endothelial cells (HUVECs). After intravenous administration, NPs of solid PACE (sPACE)-synthesized with high monomer content of a hydrophobic lactone-accumulated in the liver and, to a lesser extent, in other tissues. Within the liver, a substantial fraction of sPACE NPs were phagocytosed by liver macrophages, while a smaller fraction of NPs accumulated in hepatic stellate cells and liver sinusoidal endothelial cells, suggesting that sPACE NPs could deliver siRNA to diverse cell populations within the liver. To test this hypothesis, we loaded sPACE NPs with siRNA designed to knockdown Nogo-B, a protein that has been implicated in the progression of alcoholic liver disease and liver fibrosis. These sPACE:siRNA NPs produced up to 60% Nogo-B protein suppression in the liver after systemic administration. We demonstrate that sPACE NPs can effectively deliver siRNA therapeutics to the liver to mediate protein knockdown in vivo.


Subject(s)
Liver/metabolism , Nanoparticles , Nogo Proteins/genetics , Polyamines/chemistry , Animals , Endothelial Cells/metabolism , Gene Knockdown Techniques , HEK293 Cells , Hepatic Stellate Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , RNA, Small Interfering/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL