Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Immunity ; 51(4): 766-779.e17, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31495665

ABSTRACT

Increasing evidence indicates CD4+ T cells can recognize cancer-specific antigens and control tumor growth. However, it remains difficult to predict the antigens that will be presented by human leukocyte antigen class II molecules (HLA-II), hindering efforts to optimally target them therapeutically. Obstacles include inaccurate peptide-binding prediction and unsolved complexities of the HLA-II pathway. To address these challenges, we developed an improved technology for discovering HLA-II binding motifs and conducted a comprehensive analysis of tumor ligandomes to learn processing rules relevant in the tumor microenvironment. We profiled >40 HLA-II alleles and showed that binding motifs were highly sensitive to HLA-DM, a peptide-loading chaperone. We also revealed that intratumoral HLA-II presentation was dominated by professional antigen-presenting cells (APCs) rather than cancer cells. Integrating these observations, we developed algorithms that accurately predicted APC ligandomes, including peptides from phagocytosed cancer cells. These tools and biological insights will enable improved HLA-II-directed cancer therapies.


Subject(s)
Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Epitope Mapping/methods , HLA Antigens/metabolism , Histocompatibility Antigens Class II/genetics , Immunotherapy/methods , Mass Spectrometry/methods , Neoplasms/therapy , Algorithms , Alleles , Antigen Presentation , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Datasets as Topic , HLA Antigens/genetics , HLA-D Antigens/metabolism , Humans , Neoplasms/immunology , Protein Binding , Protein Interaction Domains and Motifs/genetics , Software
3.
Nat Methods ; 14(9): 903-908, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28783153

ABSTRACT

Data-independent acquisition (DIA) is an emerging mass spectrometry (MS)-based technique for unbiased and reproducible measurement of protein mixtures. DIA tandem mass spectrometry spectra are often highly multiplexed, containing product ions from multiple cofragmenting precursors. Detecting peptides directly from DIA data is therefore challenging; most DIA data analyses require spectral libraries. Here we present PECAN (http://pecan.maccosslab.org), a library-free, peptide-centric tool that robustly and accurately detects peptides directly from DIA data. PECAN reports evidence of detection based on product ion scoring, which enables detection of low-abundance analytes with poor precursor ion signal. We demonstrate the chromatographic peak picking accuracy and peptide detection capability of PECAN, and we further validate its detection with data-dependent acquisition and targeted analyses. Lastly, we used PECAN to build a plasma proteome library from DIA data and to query known sequence variants.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Proteome/analysis , Proteome/chemistry , Software , Tandem Mass Spectrometry/methods , Peptide Library , Reproducibility of Results , Sensitivity and Specificity
4.
Nat Methods ; 14(9): 921-927, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28825704

ABSTRACT

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the main method for high-throughput identification and quantification of peptides and inferred proteins. Within this field, data-independent acquisition (DIA) combined with peptide-centric scoring, as exemplified by the technique SWATH-MS, has emerged as a scalable method to achieve deep and consistent proteome coverage across large-scale data sets. We demonstrate that statistical concepts developed for discovery proteomics based on spectrum-centric scoring can be adapted to large-scale DIA experiments that have been analyzed with peptide-centric scoring strategies, and we provide guidance on their application. We show that optimal tradeoffs between sensitivity and specificity require careful considerations of the relationship between proteins in the samples and proteins represented in the spectral library. We propose the application of a global analyte constraint to prevent the accumulation of false positives across large-scale data sets. Furthermore, to increase the quality and reproducibility of published proteomic results, well-established confidence criteria should be reported for the detected peptide queries, peptides and inferred proteins.


Subject(s)
Data Interpretation, Statistical , High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Peptide Mapping/methods , Proteins/chemistry , Sequence Analysis, Protein/methods , Computer Simulation , Models, Statistical , Proteins/analysis , Reproducibility of Results , Sensitivity and Specificity
5.
Proteomics ; 18(12): e1700259, 2018 06.
Article in English | MEDLINE | ID: mdl-29314742

ABSTRACT

A challenge in developing personalized cancer immunotherapies is the prediction of putative cancer-specific antigens. Currently, predictive algorithms are used to infer binding of peptides to human leukocyte antigen (HLA) heterodimers to aid in the selection of putative epitope targets. One drawback of current epitope prediction algorithms is that they are trained on datasets containing biochemical HLA-peptide binding data that may not completely capture the rules associated with endogenous processing and presentation. The field of MS has made great improvements in instrumentation speed and sensitivity, chromatographic resolution, and proteogenomic database search strategies to facilitate the identification of HLA-ligands from a variety of cell types and tumor tissues. As such, these advances have enabled MS profiling of HLA-binding peptides to be a tractable, orthogonal approach to lower throughput biochemical assays for generating comprehensive datasets to train epitope prediction algorithms. In this review, we will highlight the progress made in the field of HLA-ligand profiling enabled by MS and its impact on current and future epitope prediction strategies.


Subject(s)
Computational Biology/methods , Epitopes/immunology , HLA Antigens/immunology , Mass Spectrometry/methods , Proteogenomics/methods , Epitopes/metabolism , HLA Antigens/metabolism , Humans
6.
Mol Cell Proteomics ; 14(9): 2301-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217018

ABSTRACT

In mass spectrometry-based bottom-up proteomics, data-independent acquisition is an emerging technique because of its comprehensive and unbiased sampling of precursor ions. However, current data-independent acquisition methods use wide precursor isolation windows, resulting in cofragmentation and complex mixture spectra. Thus, conventional database searching tools that identify peptides by interpreting individual tandem MS spectra are inherently limited in analyzing data-independent acquisition data. Here we discuss an alternative approach, peptide-centric analysis, which tests directly for the presence and absence of query peptides. We discuss how peptide-centric analysis resolves some limitations of traditional spectrum-centric analysis, and we outline the unique characteristics of peptide-centric analysis in general.


Subject(s)
Peptides/isolation & purification , Proteome/analysis , Proteomics/methods , Databases, Protein , Humans , Software , Tandem Mass Spectrometry/methods
7.
Nat Methods ; 10(8): 744-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793237

ABSTRACT

In mass spectrometry-based proteomics, data-independent acquisition (DIA) strategies can acquire a single data set useful for both identification and quantification of detectable peptides in a complex mixture. However, DIA data are noisy owing to a typical five- to tenfold reduction in precursor selectivity compared to data obtained with data-dependent acquisition or selected reaction monitoring. We demonstrate a multiplexing strategy, MSX, for DIA analysis that increases precursor selectivity fivefold.


Subject(s)
Peptides/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods
8.
Mol Cell Proteomics ; 11(6): M111.008524, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22027200

ABSTRACT

In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set.


Subject(s)
Bacterial Proteins/chemistry , Peptide Mapping/methods , Proteome/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Software , Algorithms , Amino Acid Sequence , Bacterial Proteins/metabolism , Data Interpretation, Statistical , Molecular Sequence Annotation , Molecular Sequence Data , Molecular Weight , Protein Processing, Post-Translational , Proteome/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Salmonella typhimurium , Tandem Mass Spectrometry
9.
Anal Chem ; 84(15): 6530-7, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22742654

ABSTRACT

Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.


Subject(s)
Lipid A/chemistry , Sound , Spectrometry, Mass, Electrospray Ionization , Automation , Francisella/metabolism , Ions/chemistry , Salmonella/metabolism
10.
Cell Rep ; 30(8): 2463-2471.e5, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32101728

ABSTRACT

Transcription factors and other chromatin-associated proteins are difficult to quantify comprehensively. Here, we combine facile nuclear sub-fractionation with data-independent acquisition mass spectrometry to achieve rapid, sensitive, and highly parallel quantification of the nuclear proteome in human cells. We apply this approach to quantify the response to acute degradation of BET bromodomains, revealing unexpected chromatin regulatory dynamics. The method is simple and enables system-level study of previously inaccessible chromatin and genome regulators.


Subject(s)
Cell Compartmentation , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Chromatin/metabolism , Humans , K562 Cells , Kinetics , Proteolysis
11.
Nat Commun ; 9(1): 5128, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30510204

ABSTRACT

Data independent acquisition (DIA) mass spectrometry is a powerful technique that is improving the reproducibility and throughput of proteomics studies. Here, we introduce an experimental workflow that uses this technique to construct chromatogram libraries that capture fragment ion chromatographic peak shape and retention time for every detectable peptide in a proteomics experiment. These coordinates calibrate protein databases or spectrum libraries to a specific mass spectrometer and chromatography setup, facilitating DIA-only pipelines and the reuse of global resource libraries. We also present EncyclopeDIA, a software tool for generating and searching chromatogram libraries, and demonstrate the performance of our workflow by quantifying proteins in human and yeast cells. We find that by exploiting calibrated retention time and fragmentation specificity in chromatogram libraries, EncyclopeDIA can detect 20-25% more peptides from DIA experiments than with data dependent acquisition-based spectrum libraries alone.


Subject(s)
Chromatography, Liquid/methods , Peptides/analysis , Proteome/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Algorithms , Databases, Protein , HeLa Cells , Humans , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/analysis
12.
J Comp Neurol ; 525(15): 3341-3359, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28685837

ABSTRACT

The avian nucleus laminaris (NL) is a brainstem nucleus necessary for binaural processing, analogous in structure and function to the mammalian medial superior olive. In chickens (Gallus gallus), NL is a well-studied model system for activity-dependent neural plasticity. Its neurons have bipolar extension of dendrites, which receive segregated inputs from two ears and display rapid and compartment-specific reorganization in response to unilateral changes in auditory input. More recently, fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates local protein translation, has been shown to be enriched in NL dendrites, suggesting its potential role in the structural dynamics of these dendrites. To explore the molecular role of FMRP in this nucleus, we performed proteomic analysis of NL, using micro laser capture and liquid chromatography tandem mass spectrometry. We identified 657 proteins, greatly represented in pathways involved in mitochondria, translation and metabolism, consistent with high levels of activity of NL neurons. Of these, 94 are potential FMRP targets, by comparative analysis with previously proposed FMRP targets in mammals. These proteins are enriched in pathways involved in cellular growth, cellular trafficking and transmembrane transport. Immunocytochemistry verified the dendritic localization of several proteins in NL. Furthermore, we confirmed the direct interaction of FMRP with one candidate, RhoC, by in vitro RNA binding assays. In summary, we provide a database of highly expressed proteins in NL and in particular a list of potential FMRP targets, with the goal of facilitating molecular characterization of FMRP signaling in future studies.


Subject(s)
Avian Proteins/metabolism , Brain Stem/metabolism , Fragile X Mental Retardation Protein/metabolism , Proteome , Animals , Blotting, Western , Brain Stem/cytology , Chickens , Chromatography, Liquid , Dendrites/metabolism , Dermoscopy , Electrophoresis , Escherichia coli , Immunohistochemistry , Laser Capture Microdissection , Microscopy, Confocal , Proteomics , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , rhoC GTP-Binding Protein/metabolism
13.
J Am Soc Mass Spectrom ; 22(5): 856-66, 2011 May.
Article in English | MEDLINE | ID: mdl-21472520

ABSTRACT

Infusion-based electrospray ionization (ESI) coupled to multiple-stage tandem mass spectrometry (MS(n)) is a standard methodology for investigating lipid A structural diversity (Shaffer et al. J. Am. Soc. Mass. Spectrom. 18(6), 1080-1092, 2007). Annotation of these MS(n) spectra, however, has remained a manual, expert-driven process. In order to keep up with the data acquisition rates of modern instruments, we devised a computational method to annotate lipid A MS(n) spectra rapidly and automatically, which we refer to as hierarchical tandem mass spectrometry (HiTMS) algorithm. As a first-pass tool, HiTMS aids expert interpretation of lipid A MS(n ) data by providing the analyst with a set of candidate structures that may then be confirmed or rejected. HiTMS deciphers the signature ions (e.g., A-, Y-, and Z-type ions) and neutral losses of MS(n) spectra using a species-specific library based on general prior structural knowledge of the given lipid A species under investigation. Candidates are selected by calculating the correlation between theoretical and acquired MS(n) spectra. At a false discovery rate of less than 0.01, HiTMS correctly assigned 85% of the structures in a library of 133 manually annotated Francisella tularensis subspecies novicida lipid A structures. Additionally, HiTMS correctly assigned 85% of the structures in a smaller library of lipid A species from Yersinia pestis demonstrating that it may be used across species.


Subject(s)
Lipid A/chemistry , Tandem Mass Spectrometry/methods , Algorithms , Computational Biology/methods , Databases, Factual , Francisella tularensis/chemistry , Lipid A/classification , Species Specificity , Yersinia pestis/chemistry
14.
ISME J ; 4(5): 673-85, 2010 May.
Article in English | MEDLINE | ID: mdl-20164862

ABSTRACT

Bacteria and Archaea play critical roles in marine energy fluxes and nutrient cycles by incorporating and redistributing dissolved organic matter and inorganic nutrients in the oceans. How these microorganisms do this work at the level of the expressed protein is known only from a few studies of targeted lineages. We used comparative membrane metaproteomics to identify functional responses of communities to different nutrient concentrations on an oceanic scale. Comparative analyses of microbial membrane fractions revealed shifts in nutrient utilization and energy transduction along an environmental gradient in South Atlantic surface waters, from a low-nutrient gyre to a highly productive coastal upwelling region. The dominant membrane proteins identified (19%) were TonB-dependent transporters (TBDTs), which are known to utilize a proton motive force to transport nutrients across the outer membrane of Gram-negative bacteria. The ocean-wide importance of TonB-dependent nutrient acquisition in marine bacteria was unsuspected. Diverse light-harvesting rhodopsins were detected in membrane proteomes from every sample. Proteomic evidence of both TBDTs and rhodopsins in the same lineages suggest that phototrophic bacterioplankton have the potential to use energy from light to fuel transport activities. We also identified viral proteins in every sample and archaeal ammonia monooxygenase proteins in the upwelling region, suggesting that Archaea are important nitrifiers in nutrient-rich surface waters.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Metagenomics , Seawater/microbiology , Archaea/chemistry , Archaea/classification , Archaea/isolation & purification , Archaeal Proteins/analysis , Atlantic Ocean , Bacteria/chemistry , Bacteria/classification , Bacteria/isolation & purification , Bacterial Proteins/analysis , Mass Spectrometry , Membrane Proteins/analysis , Proteomics , Seawater/virology
SELECTION OF CITATIONS
SEARCH DETAIL