Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 20(8): e1012440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39207937

ABSTRACT

Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.


Subject(s)
Porifera , Animals , Mice , Virulence , Porifera/microbiology , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Virulence Factors/genetics , Female , Biological Evolution , Humans , Phylogeny , Mycobacterium/pathogenicity , Mycobacterium/genetics
2.
Nat Chem Biol ; 15(4): 331-339, 2019 04.
Article in English | MEDLINE | ID: mdl-30886436

ABSTRACT

Biosynthetic gene clusters (BGCs) bridging genotype and phenotype continuously evolve through gene mutations and recombinations to generate chemical diversity. Phenazine BGCs are widespread in bacteria, and the biosynthetic mechanisms of the formation of the phenazine structural core have been illuminated in the last decade. However, little is known about the complex phenazine core-modification machinery. Here, we report the diversity-oriented modifications of the phenazine core through two distinct BGCs in the entomopathogenic bacterium Xenorhabdus szentirmaii, which lives in symbiosis with nematodes. A previously unidentified aldehyde intermediate, which can be modified by multiple enzymatic and non-enzymatic reactions, is a common intermediate bridging the pathways encoded by these BGCs. Evaluation of the antibiotic activity of the resulting phenazine derivatives suggests a highly effective strategy to convert Gram-positive specific phenazines into broad-spectrum antibiotics, which might help the bacteria-nematode complex to maintain its special environmental niche.


Subject(s)
Phenazines/metabolism , Xenorhabdus/genetics , Animals , Bacteria , Bacterial Proteins , Multigene Family/genetics , Multigene Family/physiology , Nematoda/metabolism , Xenorhabdus/metabolism
3.
Infect Immun ; 88(3)2020 02 20.
Article in English | MEDLINE | ID: mdl-31818964

ABSTRACT

The neglected tropical disease Buruli ulcer (BU) is an infection of subcutaneous tissue with Mycobacterium ulcerans There is no effective vaccine. Here, we assessed an experimental prime-boost vaccine in a low-dose murine tail infection model. We used the enoyl reductase (ER) domain of the M. ulcerans mycolactone polyketide synthases electrostatically coupled with a previously described Toll-like receptor 2 (TLR-2) agonist-based lipopeptide adjuvant, R4Pam2Cys. Mice were vaccinated and then challenged via tail inoculation with 14 to 20 CFU of a bioluminescent strain of M. ulcerans Mice receiving either the experimental ER vaccine or Mycobacterium bovis bacillus Calmette-Guérin (BCG) were equally protected, with both groups faring significantly better than nonvaccinated animals (P < 0.05). To explore potential correlates of protection, a suite of 29 immune parameters were assessed in the mice at the end of the experimental period. Multivariate statistical approaches were used to interrogate the immune response data to develop disease-prognostic models. High levels of interleukin 2 (IL-2) and low gamma interferon (IFN-γ) produced in the spleen best predicted control of infection across all vaccine groups. Univariate logistic regression revealed vaccine-specific profiles of protection. High titers of ER-specific IgG serum antibodies together with IL-2 and IL-4 in the draining lymph node (DLN) were associated with protection induced by the ER vaccine. In contrast, high titers of IL-6, tumor necrosis factor alpha (TNF-α), IFN-γ, and IL-10 in the DLN and low IFN-γ titers in the spleen were associated with protection following BCG vaccination. This study suggests that an effective BU vaccine must induce localized, tissue-specific immune profiles with controlled inflammatory responses at the site of infection.


Subject(s)
Bacterial Vaccines/immunology , Buruli Ulcer , Mycobacterium ulcerans/immunology , Vaccination/methods , Animals , BCG Vaccine/immunology , Buruli Ulcer/immunology , Buruli Ulcer/prevention & control , Interleukins/metabolism , Mice , Multivariate Analysis
4.
Chembiochem ; 21(6): 759-768, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31709676

ABSTRACT

Quorum sensing (QS) is widely accepted as a procedure that bacteria use to converse. However, prevailing thinking places acyl homoserine lactones (AHLs) at the forefront of this communication pathway in Gram-negative bacteria. With the advent of high-throughput genomics and the subsequent influx of bacterial genomes, bioinformatics analysis has determined that the genes encoding AHL biosynthesis, originally discovered to be indispensable for QS (LuxI-like proteins and homologues), are often absent in QS-capable bacteria. Instead, the sensing protein (LuxR-like proteins) is present with an apparent inability to produce any outgoing AHL signal. Recently, several signals for these LuxR solos have been identified. Herein, advances in the field of QS are discussed, with a particular focus on recent research in the field of bacterial cell-cell communication.


Subject(s)
Acyl-Butyrolactones/metabolism , Gram-Negative Bacteria/metabolism , Cell Communication , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/genetics , Quorum Sensing
5.
J Am Chem Soc ; 141(42): 16615-16623, 2019 10 23.
Article in English | MEDLINE | ID: mdl-30908039

ABSTRACT

Aryl polyene (APE) pigments are a widely distributed class of bacterial polyketides. So far, little is known about the biosynthesis of these compounds, which are produced by a novel type II polyketide synthase (PKS). We have identified all enzymes involved in APE biosynthesis and determined their peculiar functions. The biosynthesis was reconstituted in vitro, and ACP-bound intermediates were assigned for each reaction step by HPLC-MS. Native mass spectrometry experiments identified four stable complexes: the acyl-carrier proteins ApeE and ApeF bound to the thioesterase ApeK, the dehydratases ApeI and ApeP, and the ketosynthase ApeO in complex with its chain-length factor ApeC. X-ray structures of the heterodimeric ApeO:ApeC and ApeI:ApeP complexes depict striking protein-protein interactions. Altogether, our study elucidated mechanistic aspects of APE biosynthesis that unifies elements of type II fatty acid and PKS systems, but in addition includes novel enzyme complexes.


Subject(s)
Biocatalysis , Pigments, Biological/biosynthesis , Polyenes/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Amino Acid Sequence , Models, Molecular , Pigments, Biological/chemistry , Polyenes/chemistry , Protein Conformation
6.
Environ Microbiol ; 21(8): 2921-2932, 2019 08.
Article in English | MEDLINE | ID: mdl-31102315

ABSTRACT

Bacteria of the genera Photorhabdus and Xenorhabdus produce a plethora of natural products to support their similar symbiotic life cycles. For many of these compounds, the specific bioactivities are unknown. One common challenge in natural product research when trying to prioritize research efforts is the rediscovery of identical (or highly similar) compounds from different strains. Linking genome sequence to metabolite production can help in overcoming this problem. However, sequences are typically not available for entire collections of organisms. Here, we perform a comprehensive metabolic screening using HPLC-MS data associated with a 114-strain collection (58 Photorhabdus and 56 Xenorhabdus) across Thailand and explore the metabolic variation among the strains, matched with several abiotic factors. We utilize machine learning in order to rank the importance of individual metabolites in determining all given metadata. With this approach, we were able to prioritize metabolites in the context of natural product investigations, leading to the identification of previously unknown compounds. The top three highest ranking features were associated with Xenorhabdus and attributed to the same chemical entity, cyclo(tetrahydroxybutyrate). This work also addresses the need for prioritization in high-throughput metabolomic studies and demonstrates the viability of such an approach in future research.


Subject(s)
Hydroxybutyrates/metabolism , Photorhabdus/classification , Xenorhabdus/classification , Animals , Biological Products/metabolism , Photorhabdus/genetics , Photorhabdus/metabolism , Phylogeny , Symbiosis , Thailand , Xenorhabdus/genetics , Xenorhabdus/metabolism
7.
Appl Environ Microbiol ; 84(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29439984

ABSTRACT

Since 2000, cases of the neglected tropical disease Buruli ulcer, caused by infection with Mycobacterium ulcerans, have increased 100-fold around Melbourne (population 4.4 million), the capital of Victoria, in temperate southeastern Australia. The reasons for this increase are unclear. Here, we used whole-genome sequence comparisons of 178 M. ulcerans isolates obtained primarily from human clinical specimens, spanning 70 years, to model the population dynamics of this pathogen from this region. Using phylogeographic and advanced Bayesian phylogenetic approaches, we found that there has been a migration of the pathogen from the east end of the state, beginning in the 1980s, 300 km west to the major human population center around Melbourne. This move was then followed by a significant increase in M. ulcerans population size. These analyses inform our thinking around Buruli ulcer transmission and control, indicating that M. ulcerans is introduced to a new environment and then expands, rather than it being from the awakening of a quiescent pathogen reservoir.IMPORTANCE Buruli ulcer is a destructive skin and soft tissue infection caused by Mycobacterium ulcerans and is characterized by progressive skin ulceration, which can lead to permanent disfigurement and long-term disability. Despite the majority of disease burden occurring in regions of West and central Africa, Buruli ulcer is also becoming increasingly common in southeastern Australia. Major impediments to controlling disease spread are incomplete understandings of the environmental reservoirs and modes of transmission of M. ulcerans The significance of our research is that we used genomics to assess the population structure of this pathogen at the Australian continental scale. We have then reconstructed a historical bacterial spread and modeled demographic dynamics to reveal bacterial population expansion across southeastern Australia. These findings provide explanations for the observed epidemiological trends with Buruli ulcer and suggest possible management to control disease spread.


Subject(s)
Buruli Ulcer/epidemiology , Genome, Bacterial , Mycobacterium ulcerans/physiology , Bayes Theorem , Buruli Ulcer/microbiology , Genomics , Humans , Incidence , Mycobacterium ulcerans/genetics , Phylogeny , Phylogeography , Victoria/epidemiology , Whole Genome Sequencing
8.
Angew Chem Int Ed Engl ; 57(20): 5699-5702, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29508935

ABSTRACT

Photorhabdus luminescens dedicates a significant proportion of its genome to the production of natural products. These products and the structural variation in their derivatives may occur by a number of well-described mechanisms, such as module skipping or precursor promiscuity. Cappable-seq was used to identify transcriptional start sites of many of the gene clusters present in P. luminescens TTO1. We discovered that variations associated with the non-ribosomal peptide synthetase Kol, which is responsible for kolossin A production, possessed a number of internal transcripts that lead to synthesis of the smaller kolossin derivatives kolossin B and C. The data here support a new mechanism of natural product biosynthetic variation whereby mRNA may code for shorter NRPS enzymes in addition to full-length proteins, resulting in the production of smaller peptide derivatives.


Subject(s)
Biological Products/metabolism , Peptide Synthases/metabolism , Photorhabdus/chemistry , Biological Products/chemistry , Molecular Conformation , Peptide Synthases/chemistry , Peptide Synthases/genetics , Photorhabdus/metabolism
9.
Environ Microbiol ; 19(1): 119-129, 2017 01.
Article in English | MEDLINE | ID: mdl-27555343

ABSTRACT

Photorhabdus luminescens maintains a symbiotic relationship with the nematodes Heterorhabditis bacteriophora and together they infect and kill insect larvae. To maintain this symbiotic relationship, the bacteria must produce an array of secondary metabolites to assist in the development and replication of nematodes. The regulatory mechanisms surrounding production of these compounds are mostly unknown. The global post-transcriptional regulator, Hfq, is widespread in bacteria and performs many functions, one of which is the facilitation of sRNA binding to target mRNAs, with recent research thoroughly exploring its various pleiotropic effects. Here we generate and characterize an hfq deletion mutant and show that in the absence of hfq, the bacteria are no longer able to maintain a healthy symbiosis with nematodes due to the abolishment of the production of all known secondary metabolites. RNAseq led us to produce a second deletion of a known repressor, HexA, in the same strain, which restored both metabolite production and symbiosis.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Host Factor 1 Protein/genetics , Photorhabdus/genetics , Rhabditoidea/microbiology , Secondary Metabolism/genetics , Animals , Insecta/microbiology , Insecta/parasitology , Photorhabdus/physiology , RNA, Messenger/genetics , RNA, Small Untranslated/genetics , Symbiosis/physiology
10.
Int J Syst Evol Microbiol ; 67(5): 1107-1114, 2017 May.
Article in English | MEDLINE | ID: mdl-28056225

ABSTRACT

Two slightly yellowish-pigmented, oxidase-negative, rod-shaped and Gram-stain-negative bacterial strains (30TX1T and DL20T), isolated from Steinernema sangi and Steinernema eapokense, respectively, during soil sampling in Vietnam were studied using a polyphasic taxonomic approach. Strain 30TX1T showed highest 16S rRNA gene sequence similarity to the type strain of Xenorhabdus ehlersii (98.9 %) and strain DL20T to that of Xenorhabdus ishibashii (98.7 %). Sequence similarities to all other Xenorhabdus species were lower (<98.4 %). The two strains shared 98 % 16S rRNA gene sequence similarity. Multilocus sequence analysis (MLSA) based on concatenated partial recA, dnaN, gltX, gyrB and infB gene sequences showed a clear distinction of strains 30TX1T and DL20T among each other and to the closest related type strains. DNA-DNA hybridizations between strain DL20T and the type strain of X. ishibashii resulted in a relatedness value of 53 %. Genome-to-genome-based comparisons gave average nucleotide identities of 93.6 % (reciprocal 93.5 %) for strain 30TX1T and X. ehlersii DSM 16337T, of 92.8 % (reciprocal 93 %) for strain DL20T and X. ishibashiiDSM 22670Tand of 93.0 % (reciprocal 93.2 %) for the two novel strains. The fatty acid profile of the strains consisted of the major fatty acids C14 : 0, C16 : 0, C17 : 0 cyclo, C16 : 1ω7c and/or iso-C15 : 0 2-OH, and C18 : 1ω7c. Genome-to-genome comparison and MLSA results together with the differential biochemical and chemotaxonomic properties showed that strains 30TX1T and DL20T represent novel Xenorhabdus species, for which the names Xenorhabdus thuongxuanensis sp. nov. (type strain 30TX1T=CCM 8727T=LMG 29916T) and Xenorhabdus eapokensis sp. nov. (type strain DL20T=CCM 8728T=LMG 29917T) are proposed, respectively.


Subject(s)
Phylogeny , Rhabditida/microbiology , Xenorhabdus/classification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Multilocus Sequence Typing , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vietnam , Xenorhabdus/genetics , Xenorhabdus/isolation & purification
11.
Int J Syst Evol Microbiol ; 67(4): 1046-1051, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28032540

ABSTRACT

A lightly yellowish-pigmented, oxidase-negative bacterial strain (PB45.5T) isolated from the Nam Nao district of Phetchabun in central Thailand was investigated to determine its taxonomic position. Cells of the isolate showed a rod shaped appearance. The strain stained Gram-negative. Strain PB45.5T shared highest 16S rRNA gene sequence similarity with the type strains of Photorhabdus luminescens subsp. akhurstii (99.2 %) and Photorhabdus luminescens subsp. hainanensis (99.1 %) and lower similarities to all other Photorhabdus luminescens subspecies (<98.0 %). Multilocus sequence analysis (MLSA) based on concatenated partial recA, dnaN, gltX, gyrB and infB gene sequences confirmed the affiliation obtained by 16S rRNA gene sequence analysis but showed a clear distinction of PB45.5T from the closest related type strains. Strain PB45.5T shared only 96.9 % sequence similarity (concatenated nucleotide sequences) with P. luminescens subsp. akhurstii FRG04T and 96.8 % with P. luminescens subsp. hainanensis C8404T. The fatty acid profile of the strain consisted of the major fatty acids C14 : 0, C16 : 0, C17 : 0 cyclo, C16 : 1ω7c and/or iso-C15 : 0 2-OH, and C18 : 1ω7c. The MLSA results and the differential biochemical and chemotaxonomic properties showed that strain PB45.5T represents a novel P. luminescens subspecies, for which the name Photorhabdus luminescens subsp. namnaonensis subsp. nov. (type strain PB45.5T=LMG 29915T=CCM 8729T) is proposed.


Subject(s)
Nematoda/microbiology , Photorhabdus/classification , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Multilocus Sequence Typing , Photorhabdus/genetics , Photorhabdus/isolation & purification , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Thailand
12.
BMC Genomics ; 17: 537, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27488257

ABSTRACT

BACKGROUND: Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes. RESULTS: Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes. CONCLUSIONS: Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host.


Subject(s)
Bacterial Proteins/genetics , Nematoda/microbiology , Photorhabdus/genetics , Sequence Analysis, DNA/methods , Animals , Base Composition , Base Sequence , Conserved Sequence , Genome, Bacterial , Insecta/parasitology , Multigene Family , Photorhabdus/metabolism , Secondary Metabolism , Symbiosis
13.
Chembiochem ; 17(3): 247-53, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26629877

ABSTRACT

Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria.


Subject(s)
Antioxidants/metabolism , Biological Products/metabolism , Carotenoids/metabolism , Comamonadaceae/metabolism , Polyenes/metabolism , Antioxidants/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Products/chemistry , Carotenoids/chemistry , Chromatography, High Pressure Liquid , Comamonadaceae/genetics , Genome, Bacterial , Multigene Family , Mutagenesis , Phylogeny , Polyenes/chemistry , Reactive Oxygen Species/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Angew Chem Int Ed Engl ; 54(43): 12702-5, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26465655

ABSTRACT

Pyrrolizidine alkaloids (PAs) are widespread plant natural products with potent toxicity and bioactivity. Herein, the identification of bacterial PAs from entomopathogenic bacteria using differential analysis by 2D NMR spectroscopy (DANS) and mass spectrometry is described. Their biosynthesis was elucidated to involve a non-ribosomal peptide synthetase. The occurrence of these biosynthesis gene clusters in Gram-negative and Gram-positive bacteria indicates an important biological function in bacteria.


Subject(s)
Bacteria/metabolism , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/metabolism , Bacteria/chemistry , Bacteria/enzymology , Bacterial Proteins/metabolism , Biosynthetic Pathways , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Peptide Synthases/metabolism , Xenorhabdus/chemistry , Xenorhabdus/enzymology , Xenorhabdus/metabolism
15.
J Bacteriol ; 195(3): 556-64, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23204453

ABSTRACT

In 2004, a previously undiscovered mycobacterium resembling Mycobacterium ulcerans (the agent of Buruli ulcer) was reported in an outbreak of a lethal mycobacteriosis in a laboratory colony of the African clawed frog Xenopus tropicalis. This mycobacterium makes mycolactone and is one of several strains of M. ulcerans-like mycolactone-producing mycobacteria recovered from ectotherms around the world. Here, we describe the complete 6,399,543-bp genome of this frog pathogen (previously unofficially named "Mycobacterium liflandii"), and we show that it has undergone an intermediate degree of reductive evolution between the M. ulcerans Agy99 strain and the fish pathogen Mycobacterium marinum M strain. Like M. ulcerans Agy99, it has the pMUM mycolactone plasmid, over 200 chromosomal copies of the insertion sequence IS2404, and a high proportion of pseudogenes. However, M. liflandii has a larger genome that is closer in length, sequence, and architecture to M. marinum M than to M. ulcerans Agy99, suggesting that the M. ulcerans Agy99 strain has undergone accelerated evolution. Scrutiny of the genes specifically lost suggests that M. liflandii is a tryptophan, tyrosine, and phenylalanine auxotroph. A once-extensive M. marinum-like secondary metabolome has also been diminished through reductive evolution. Our analysis shows that M. liflandii, like M. ulcerans Agy99, has the characteristics of a niche-adapted mycobacterium but also has several distinctive features in important metabolic pathways that suggest that it is responding to different environmental pressures, supporting earlier proposals that it could be considered an M. ulcerans ecotype, hence the name M. ulcerans ecovar Liflandii.


Subject(s)
Chromosomes, Bacterial/genetics , Genome, Bacterial , Mycobacterium Infections, Nontuberculous/veterinary , Mycobacterium ulcerans/genetics , Ranidae/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Chromosome Mapping , Drug Resistance, Bacterial , Multigene Family , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium ulcerans/drug effects
16.
BMC Genomics ; 14: 595, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24004955

ABSTRACT

BACKGROUND: In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. RESULTS: To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb-130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. CONCLUSIONS: Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic differences between the two clones, differences that can now be tested to explain the molecular basis for the success and emergence of ST203 E. faecium.


Subject(s)
Comparative Genomic Hybridization , Enterococcus faecium/genetics , Genome, Bacterial , Vancomycin Resistance , Animals , Australia , DNA Transposable Elements , DNA, Bacterial/genetics , Enterococcus faecium/classification , Enterococcus faecium/pathogenicity , Humans , Moths , Phenotype , Plasmids/genetics , Sequence Analysis, DNA , Virulence
18.
Microbiome ; 10(1): 45, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272716

ABSTRACT

BACKGROUND: The causative agent of Chagas disease, Trypanosoma cruzi, and its nonpathogenic relative, Trypanosoma rangeli, are transmitted by haematophagous triatomines and undergo a crucial ontogenetic phase in the insect's intestine. In the process, the parasites interfere with the host immune system as well as the microbiome present in the digestive tract potentially establishing an environment advantageous for development. However, the coherent interactions between host, pathogen and microbiota have not yet been elucidated in detail. We applied a metagenome shotgun sequencing approach to study the alterations in the microbiota of Rhodnius prolixus, a major vector of Chagas disease, after exposure to T. cruzi and T. rangeli focusing also on the functional capacities present in the intestinal microbiome of the insect. RESULTS: The intestinal microbiota of R. prolixus was dominated by the bacterial orders Enterobacterales, Corynebacteriales, Lactobacillales, Clostridiales and Chlamydiales, whereas the latter conceivably originated from the blood used for pathogen exposure. The anterior and posterior midgut samples of the exposed insects showed a reduced overall number of organisms compared to the control group. However, we also found enriched bacterial groups after exposure to T. cruzi as well as T rangeli. While the relative abundance of Enterobacterales and Corynebacteriales decreased considerably, the Lactobacillales, mainly composed of the genus Enterococcus, developed as the most abundant taxonomic group. This applies in particular to vectors challenged with T. rangeli and at early timepoints after exposure to vectors challenged with T. cruzi. Furthermore, we were able to reconstruct four metagenome-assembled genomes from the intestinal samples and elucidate their unique metabolic functionalities within the triatomine microbiome, including the genome of a recently described insect symbiont, Candidatus Symbiopectobacterium, and the secondary metabolites producing bacteria Kocuria spp. CONCLUSIONS: Our results facilitate a deeper understanding of the processes that take place in the intestinal tract of triatomine vectors during colonisation by trypanosomal parasites and highlight the influential aspects of pathogen-microbiota interactions. In particular, the mostly unexplored metabolic capacities of the insect vector's microbiome are clearer, underlining its role in the transmission of Chagas disease. Video Abstract.


Subject(s)
Chagas Disease , Microbiota , Parasites , Rhodnius , Trypanosoma cruzi , Animals , Insect Vectors/microbiology , Insect Vectors/parasitology , Microbiota/genetics , Rhodnius/parasitology , Trypanosoma cruzi/genetics
19.
Nat Chem ; 14(6): 701-712, 2022 06.
Article in English | MEDLINE | ID: mdl-35469007

ABSTRACT

Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria-nematode-insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship.


Subject(s)
Biological Products , Nematoda , Photorhabdus , Xenorhabdus , Animals , Humans , Insecta/genetics , Insecta/microbiology , Multigene Family , Nematoda/genetics , Nematoda/microbiology , Photorhabdus/genetics , Symbiosis/genetics , Xenorhabdus/genetics
20.
Mol Microbiol ; 78(5): 1216-31, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21091506

ABSTRACT

Mycobacterium ulcerans is the causative agent of the debilitating skin disease Buruli ulcer, which is most prevalent in Western and Central Africa. M. ulcerans shares >98% DNA sequence identity with Mycobacterium marinum, however, M. marinum produces granulomatous, but not ulcerative, lesions in humans and animals. Here we report the differential expression of a small heat shock protein (Hsp18) between strains of M. ulcerans (Hsp18(+) ) and M. marinum (Hsp18(-) ) and describe the molecular basis for this difference. We show by gene deletion and GFP reporter assays in M. marinum that a divergently transcribed gene called hspR_2, immediately upstream of hsp18, encodes a MerR-like regulatory protein that represses hsp18 transcription while promoting its own expression. Naturally occurring mutations within a 70 bp segment of the 144 bp hspR_2-hsp18 intergenic region among M. ulcerans strains inhibit hspR_2 transcription and explain the Hsp18(+) phenotype. We also propose a biological role for Hsp18, as we show that this protein significantly enhances bacterial attachment or aggregation during biofilm formation. This study has uncovered a new member of the MerR family of transcriptional regulators and suggests that upregulation of hsp18 expression was an important pathoadaptive response in the evolution of M. ulcerans from a M. marinum-like ancestor.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/metabolism , Mycobacterium ulcerans/physiology , alpha-Crystallins/metabolism , Bacterial Proteins/genetics , Base Sequence , Heat-Shock Proteins/genetics , Molecular Sequence Data , Mycobacterium marinum/classification , Mycobacterium marinum/genetics , Mycobacterium marinum/metabolism , Mycobacterium ulcerans/classification , Mycobacterium ulcerans/genetics , Phylogeny , Promoter Regions, Genetic , Up-Regulation , alpha-Crystallins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL