Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Rep ; 43(2): 113706, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38294906

ABSTRACT

Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.


Subject(s)
Filoviridae , Orthomyxoviridae Infections , Animals , Humans , Immunoinformatics , Macaca , Antiviral Agents
2.
Nat Microbiol ; 9(3): 776-786, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321182

ABSTRACT

Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.


Subject(s)
Caliciviridae Infections , Norovirus , Vaccines , Humans , Animals , Macaca mulatta , Intestine, Small
3.
Sci Transl Med ; 16(728): eadd5960, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170789

ABSTRACT

Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Plasma Cells/metabolism , Antibodies, Viral , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Adjuvants, Immunologic , Primates , Antibodies, Neutralizing
4.
Cell Rep ; 43(6): 114285, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38819987

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively. Immunization of cynomolgus macaques with HIT01-K21Q-R218E, a cleavage-resistant variant, elicits high-titer PCSK9-directed antibody responses and significantly reduces serum levels of cholesterol 2 weeks after each immunization. However, HIT01-K21Q-R218E immunizations also increase serum PCSK9 levels by up to 5-fold, likely due to PCSK9-binding antibodies altering the half-life of PCSK9. While vaccination with a PCSK9 mimic can induce antibodies that block interactions of PCSK9 with the LDL receptor, PCSK9-binding antibodies appear to alter homeostatic levels of PCSK9, thereby confounding its vaccine impact. Our results nevertheless suggest a mechanism for increasing the half-life of soluble regulatory factors by vaccination.


Subject(s)
Cholesterol , Immunization , Macaca fascicularis , Proprotein Convertase 9 , Proprotein Convertase 9/immunology , Proprotein Convertase 9/metabolism , Animals , Humans , Mice , Cholesterol/metabolism , Cholesterol/blood , Immunization/methods , Receptors, LDL/metabolism , Female , Mice, Inbred C57BL
5.
Sci Transl Med ; 16(730): eadh9039, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232141

ABSTRACT

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 µg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Macaca mulatta , Broadly Neutralizing Antibodies , HIV Antibodies/therapeutic use , HIV Infections/prevention & control , Antibodies, Monoclonal , Peptides , Antibodies, Neutralizing
6.
iScience ; 27(2): 108877, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318357

ABSTRACT

Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth. Here, we demonstrate that long trimer-boosting intervals, but not long FP immunization intervals, reduce the anti-base response. Additionally, we identify that FP priming before trimer immunization enhances antibody avidity to the Env trimer. We also establish that adjuvants Matrix M and Adjuplex further reduce anti-base responses and increase neutralizing titers. FP priming, long trimer-immunization interval, and an appropriate adjuvant can thus reduce anti-base antibody responses and improve Env-directed vaccine outcomes.

7.
Nat Commun ; 15(1): 285, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177144

ABSTRACT

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.


Subject(s)
Lassa Fever , Single-Domain Antibodies , Animals , Guinea Pigs , Lassa virus , Antibodies, Viral , Antibodies, Neutralizing
8.
Nat Commun ; 15(1): 6894, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134521

ABSTRACT

SARS-CoV-2 has the capacity to evolve mutations that escape vaccine- and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool that would maintain its efficacy despite the ongoing emergence of new variants. Here, we challenge male rhesus macaques with SARS-CoV-2 Delta-the most pathogenic variant in a highly susceptible animal model. At the time of challenge, we also treat the macaques with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment equivalently suppresses virus replication in both upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 does not block the development of virus-specific T- and B-cell responses and does not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , SARS-CoV-2 , Virus Replication , Animals , Humans , Male , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Chlorocebus aethiops , COVID-19/virology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Drug Treatment , Disease Models, Animal , Macaca mulatta , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL