Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Immunity ; 50(2): 334-347.e9, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30709743

ABSTRACT

Elevated endogenous retrovirus (ERV) transcription and anti-ERV antibody reactivity are implicated in lupus pathogenesis. Overproduction of non-ecotropic ERV (NEERV) envelope glycoprotein gp70 and resultant nephritis occur in lupus-prone mice, but whether NEERV mis-expression contributes to lupus etiology is unclear. Here we identified suppressor of NEERV (Snerv) 1 and 2, Krüppel-associated box zinc-finger proteins (KRAB-ZFPs) that repressed NEERV by binding the NEERV long terminal repeat to recruit the transcriptional regulator KAP1. Germline Snerv1/Snerv2 deletion increased activating chromatin modifications, transcription, and gp70 expression from NEERV loci. F1 crosses of lupus-prone New Zealand Black (NZB) and 129 mice to Snerv1/Snerv2-/- mice failed to restore NEERV repression, demonstrating that loss of SNERV underlies the lupus autoantigen gp70 overproduction that promotes nephritis in susceptible mice and that SNERV encodes for Sgp3 (in NZB mice) and Gv-1 loci (in 129 mice). Increased ERV expression in lupus patients inversely correlated with three putative ERV-suppressing KRAB-ZFPs, suggesting that loss of KRAB-ZFP-mediated ERV control may contribute to human lupus pathogenesis.


Subject(s)
Carrier Proteins/immunology , Endogenous Retroviruses/immunology , Glycoproteins/immunology , Lupus Nephritis/immunology , Molecular Chaperones/immunology , Nuclear Proteins/immunology , Repressor Proteins/immunology , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Gene Expression Regulation/immunology , Genetic Predisposition to Disease/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , HEK293 Cells , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Nephritis/genetics , Lupus Nephritis/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred NZB , Mice, Knockout , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Nature ; 584(7821): 463-469, 2020 08.
Article in English | MEDLINE | ID: mdl-32717743

ABSTRACT

Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytokines/analysis , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Adult , Aged , Aged, 80 and over , COVID-19 , Cluster Analysis , Cytokines/immunology , Eosinophils/immunology , Female , Humans , Immunoglobulin E/analysis , Immunoglobulin E/immunology , Interleukin-13/analysis , Interleukin-13/immunology , Interleukin-5/analysis , Interleukin-5/immunology , Male , Middle Aged , Pandemics , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Viral Load , Young Adult
3.
Nature ; 588(7837): 315-320, 2020 12.
Article in English | MEDLINE | ID: mdl-32846427

ABSTRACT

There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Sex Characteristics , T-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Chemokines/blood , Chemokines/immunology , Cohort Studies , Cytokines/blood , Disease Progression , Female , Humans , Lymphocyte Activation , Male , Monocytes/immunology , Phenotype , Prognosis , RNA, Viral/analysis , SARS-CoV-2/pathogenicity , Viral Load
4.
PLoS Biol ; 20(5): e3001506, 2022 05.
Article in English | MEDLINE | ID: mdl-35609110

ABSTRACT

The impact of Coronavirus Disease 2019 (COVID-19) mRNA vaccination on pregnancy and fertility has become a major topic of public interest. We investigated 2 of the most widely propagated claims to determine (1) whether COVID-19 mRNA vaccination of mice during early pregnancy is associated with an increased incidence of birth defects or growth abnormalities; and (2) whether COVID-19 mRNA-vaccinated human volunteers exhibit elevated levels of antibodies to the human placental protein syncytin-1. Using a mouse model, we found that intramuscular COVID-19 mRNA vaccination during early pregnancy at gestational age E7.5 did not lead to differences in fetal size by crown-rump length or weight at term, nor did we observe any gross birth defects. In contrast, injection of the TLR3 agonist and double-stranded RNA mimic polyinosinic-polycytidylic acid, or poly(I:C), impacted growth in utero leading to reduced fetal size. No overt maternal illness following either vaccination or poly(I:C) exposure was observed. We also found that term fetuses from these murine pregnancies vaccinated prior to the formation of the definitive placenta exhibit high circulating levels of anti-spike and anti-receptor-binding domain (anti-RBD) antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) consistent with maternal antibody status, indicating transplacental transfer in the later stages of pregnancy after early immunization. Finally, we did not detect increased levels of circulating anti-syncytin-1 antibodies in a cohort of COVID-19 vaccinated adults compared to unvaccinated adults by ELISA. Our findings contradict popular claims associating COVID-19 mRNA vaccination with infertility and adverse neonatal outcomes.


Subject(s)
COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , Female , Fetus , Gene Products, env , Humans , Mice , Placenta/metabolism , Pregnancy , Pregnancy Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2 , Vaccination
5.
Proc Natl Acad Sci U S A ; 119(20): e2011665119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35549556

ABSTRACT

APOBEC3A (A3A) is a cytidine deaminase that inactivates a variety of viruses through introduction of lethal mutations to the viral genome. Additionally, A3A can suppress HIV-1 transcription in a deaminase-independent manner by binding to the long terminal repeat of proviral HIV-1. However, it is unknown whether A3A targets additional host genomic loci for repression. In this study, we found that A3A suppresses gene expression by binding TTTC doublets that are in close proximity to each other. However, one TTTC motif is sufficient for A3A binding. Because TTTC doublets are present in interferon (IFN)-stimulated response elements (ISRE), we hypothesized that A3A may impact IFN-stimulated gene (ISG) expression. After scanning the human genome for TTTC doublet occurrences, we discovered that these motifs are enriched in the proximal promoters of genes associated with antiviral responses and type I IFN (IFN-I) signaling. As a proof of principle, we examined whether A3A can impact ISG15 expression. We found that A3A binding to the ISRE inhibits phosphorylated STAT-1 binding and suppresses ISG15 induction in response to IFN-I treatment. Consistent with these data, our RNA-sequencing analyses indicate that A3A loss results in increased IFN-I­dependent induction of several ISGs. This study revealed that A3A plays an unexpected role in ISG regulation and suggests that A3A contributes to a negative feedback loop during IFN signaling.


Subject(s)
Cytidine Deaminase , Cytokines , Gene Expression Regulation , Interferon-alpha , Ubiquitins , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Cytokines/genetics , Humans , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Response Elements , Ubiquitins/genetics
6.
PLoS Biol ; 18(10): e3000867, 2020 10.
Article in English | MEDLINE | ID: mdl-33027248

ABSTRACT

The current quantitative reverse transcription PCR (RT-qPCR) assay recommended for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the United States requires analysis of 3 genomic targets per sample: 2 viral and 1 host. To simplify testing and reduce the volume of required reagents, we devised a multiplex RT-qPCR assay to detect SARS-CoV-2 in a single reaction. We used existing N1, N2, and RP primer and probe sets by the Centers for Disease Control and Prevention, but substituted fluorophores to allow multiplexing of the assay. The cycle threshold (Ct) values of our multiplex RT-qPCR were comparable to those obtained by the single assay adapted for research purposes. Low copy numbers (≥500 copies/reaction) of SARS-CoV-2 RNA were consistently detected by the multiplex RT-qPCR. Our novel multiplex RT-qPCR improves upon current single diagnostics by saving reagents, costs, time, and labor.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Multiplex Polymerase Chain Reaction/standards , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , Clinical Laboratory Techniques/standards , Coronavirus Infections/virology , DNA Primers/standards , HEK293 Cells , Humans , Limit of Detection , Nasopharynx/virology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States
9.
Proc Natl Acad Sci U S A ; 115(50): 12565-12572, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30455304

ABSTRACT

Endogenous retroviruses (ERVs) are integrated retroviral elements that make up 8% of the human genome. However, the impact of ERVs on human health and disease is not well understood. While select ERVs have been implicated in diseases, including autoimmune disease and cancer, the lack of tools to analyze genome-wide, locus-specific expression of proviral autonomous ERVs has hampered the progress in the field. Here we describe a method called ERVmap, consisting of an annotated database of 3,220 human proviral ERVs and a pipeline that allows for locus-specific genome-wide identification of proviral ERVs that are transcribed based on RNA-sequencing data, and provide examples of the utility of this tool. Using ERVmap, we revealed cell-type-specific ERV expression patterns in commonly used cell lines as well as in primary cells. We identified 124 unique ERV loci that are significantly elevated in the peripheral blood mononuclear cells of patients with systemic lupus erythematosus that represent an IFN-independent signature. Finally, we identified additional tumor-associated ERVs that correlate with cytolytic activity represented by granzyme and perforin expression in breast cancer tissue samples. The open-source code of ERVmap and the accompanied web tool are made publicly available to quantify proviral ERVs in RNA-sequencing data with ease. Use of ERVmap across a range of diseases and experimental conditions has the potential to uncover novel disease-associated antigens and effectors involved in human health that is currently missed by focusing on protein-coding sequences.


Subject(s)
Endogenous Retroviruses/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/virology , Cell Line , Chromosome Mapping , Computational Biology , Databases, Nucleic Acid , Endogenous Retroviruses/immunology , Endogenous Retroviruses/physiology , Female , Genome, Human , Genome, Viral , Humans , Immunologic Surveillance/genetics , Leukocytes, Mononuclear/virology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/virology , Proviruses/genetics , Sequence Analysis, RNA , Transcription, Genetic
10.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31341050

ABSTRACT

Endogenous retroviruses (ERV) are found throughout vertebrate genomes, and failure to silence their activation can have deleterious consequences on the host. Mutation and subsequent disruption of ERV loci is therefore an indispensable component of the cell-intrinsic defenses that maintain the integrity of the host genome. Abundant in vitro and in silico evidence have revealed that APOBEC3 cytidine-deaminases, including human APOBEC3G (hA3G), can potently restrict retrotransposition; yet, in vivo data demonstrating such activity is lacking, since no replication-competent human ERV have been identified. In mice deficient for Toll-like receptor 7 (TLR7), transcribed ERV loci can recombine and generate infectious ERV. In this study, we show that ectopic expression of hA3G can prevent the emergence of replication-competent, infectious ERV in Tlr7-/- mice. Mice encode one copy of Apobec3 in their genome. ERV reactivation in Tlr7-/- mice was comparable in the presence or absence of Apobec3 In contrast, expression of a human APOBEC3G transgene abrogated emergence of infectious ERV in the Tlr7-/- background. No ERV RNA was detected in the plasma of hA3G+Apobec3-/-Tlr7-/- mice, and infectious ERV virions could not be amplified through coculture with permissive cells. These data reveal that hA3G can potently restrict active ERV in vivo and suggest that expansion of the APOBEC3 locus in primates may have helped to provide for the continued restraint of ERV in the human genome.IMPORTANCE Although APOBEC3 proteins are known to be important antiviral restriction factors in both mice and humans, their roles in the restriction of endogenous retroviruses (ERV) have been limited to in vitro studies. Here, we report that human APOBEC3G expressed as a transgene in mice prevents the emergence of infectious ERV from endogenous loci. This study reveals that APOBEC3G can powerfully restrict active retrotransposons in vivo and demonstrates how transgenic mice can be used to investigate host mechanisms that inhibit retrotransposons and reinforce genomic integrity.


Subject(s)
APOBEC-3G Deaminase/metabolism , Endogenous Retroviruses/physiology , Retroviridae Infections/metabolism , Retroviridae Infections/virology , Virus Replication , Animals , Gene Dosage , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate , Mice , Mice, Knockout , Open Reading Frames , Retroviridae Infections/immunology , Toll-Like Receptors/metabolism
13.
PLoS Pathog ; 7(9): e1002265, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21966273

ABSTRACT

Natural killer (NK) cells are lymphocytes that play a major role in the elimination of virally-infected cells and tumor cells. NK cells recognize and target abnormal cells through activation of stimulatory receptors such as NKG2D. NKG2D ligands are self-proteins, which are absent or expressed at low levels on healthy cells but are induced upon cellular stress, transformation, or viral infection. The exact molecular mechanisms driving expression of these ligands remain poorly understood. Here we show that murine cytomegalovirus (MCMV) infection activates the phosphatidylinositol-3-kinase (PI3K) pathway and that this activation is required for the induction of the RAE-1 family of mouse NKG2D ligands. Among the multiple PI3K catalytic subunits, inhibition of the p110α catalytic subunit blocks this induction. Similarly, inhibition of p110α PI3K reduces cell surface expression of RAE-1 on transformed cells. Many viruses manipulate the PI3K pathway, and tumors frequently mutate the p110α oncogene. Thus, our findings suggest that dysregulation of the PI3K pathway is an important signal to induce expression of RAE-1, and this may represent a commonality among various types of cellular stresses that result in the induction of NKG2D ligands.


Subject(s)
Cytomegalovirus Infections/physiopathology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily K/biosynthesis , Nuclear Matrix-Associated Proteins/biosynthesis , Nucleocytoplasmic Transport Proteins/biosynthesis , Phosphatidylinositol 3-Kinase/physiology , Receptors, Natural Killer Cell/physiology , Animals , Catalytic Domain/physiology , Cell Line, Tumor , Cell Transformation, Viral , Class I Phosphatidylinositol 3-Kinases , Fibroblasts/virology , Killer Cells, Natural/immunology , Ligands , Mice , Muromegalovirus/immunology , Phosphatidylinositol 3-Kinases/physiology
14.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34019642

ABSTRACT

Neutrophil activation and the formation of neutrophil extracellular traps (NETs) are hallmarks of innate immune activation in systemic lupus erythematosus (SLE). Here we report that the expression of an endogenous retrovirus (ERV) locus ERV-K102, encoding an envelope protein, was significantly elevated in SLE patient blood and correlated with autoantibody levels and higher interferon status. Induction of ERV-K102 in SLE negatively correlated with the expression of epigenetic silencing factors. Anti-ERV-K102 IgG levels in SLE plasma correlated with higher interferon stimulated gene expression, and further promoted enhanced neutrophil phagocytosis of ERV-K102 envelope protein through immune complex formation. Finally, phagocytosis of ERV-K102 immune complexes resulted in the formation of NETs consisting of DNA, neutrophil elastase, and citrullinated histone H3. Together, we identified an immunostimulatory ERV-K envelope protein that in an immune complex with SLE IgG is capable of activating neutrophils.


Subject(s)
Antibodies/immunology , Endogenous Retroviruses/immunology , Lupus Erythematosus, Systemic/immunology , Neutrophil Activation/immunology , Neutrophils/immunology , Viral Envelope/immunology , Autoantibodies/immunology , DNA/immunology , Epigenesis, Genetic/immunology , Extracellular Traps , Gene Expression/immunology , Humans , Immunity, Innate/immunology , Immunoglobulin G/immunology , Interferons/immunology , Lupus Erythematosus, Systemic/virology , Phagocytosis/immunology
15.
Front Immunol ; 12: 758721, 2021.
Article in English | MEDLINE | ID: mdl-35058919

ABSTRACT

Endogenous retroviruses (ERVs) are genomic sequences that originated from retroviruses and are present in most eukaryotic genomes. Both beneficial and detrimental functions are attributed to ERVs, but whether ERVs contribute to antiviral immunity is not well understood. Here, we used herpes simplex virus type 2 (HSV-2) infection as a model and found that Toll-like receptor 7 (Tlr7-/-) deficient mice that have high systemic levels of infectious ERVs are protected from intravaginal HSV-2 infection and disease, compared to wildtype C57BL/6 mice. We deleted the endogenous ecotropic murine leukemia virus (Emv2) locus on the Tlr7-/- background (Emv2-/-Tlr7-/-) and found that Emv2-/-Tlr7-/- mice lose protection against HSV-2 infection. Intravaginal application of purified ERVs from Tlr7-/- mice prior to HSV-2 infection delays disease in both wildtype and highly susceptible interferon-alpha receptor-deficient (Ifnar1-/-) mice. However, intravaginal ERV treatment did not protect Emv2-/-Tlr7-/- mice from HSV-2 disease, suggesting that the protective mechanism mediated by exogenous ERV treatment may differ from that of constitutively and systemically expressed ERVs in Tlr7-/- mice. We did not observe enhanced type I interferon (IFN-I) signaling in the vaginal tissues from Tlr7-/- mice, and instead found enrichment in genes associated with extracellular matrix organization. Together, our results revealed that constitutive and/or systemic expression of ERVs protect mice against vaginal HSV-2 infection and delay disease.


Subject(s)
Endogenous Retroviruses/immunology , Herpes Genitalis/immunology , Herpes Genitalis/prevention & control , Herpesvirus 2, Human/immunology , Vaginal Diseases/immunology , Vaginal Diseases/prevention & control , Animals , Endogenous Retroviruses/genetics , Female , Herpes Genitalis/genetics , Herpesvirus 2, Human/genetics , Mice , Mice, Knockout , Vaginal Diseases/genetics
16.
Kidney360 ; 2(6): 924-936, 2021 06 24.
Article in English | MEDLINE | ID: mdl-35373072

ABSTRACT

Background: SARS-CoV-2 infection has, as of April 2021, affected >133 million people worldwide, causing >2.5 million deaths. Because the large majority of individuals infected with SARS-CoV-2 are asymptomatic, major concerns have been raised about possible long-term consequences of the infection. Methods: Wedeveloped an antigen capture assay to detect SARS-CoV-2 spike protein in urine samples from patients with COVID-19whose diagnosis was confirmed by positive PCR results from nasopharyngeal swabs (NP-PCR+) forSARS-CoV-2. We used a collection of 233 urine samples from 132 participants from Yale New Haven Hospital and the Children's Hospital of Philadelphia that were obtained during the pandemic (106 NP-PCR+ and 26 NP-PCR-), and a collection of 20 urine samples from 20 individuals collected before the pandemic. Results: Our analysis identified 23 out of 91 (25%) NP-PCR+ adult participants with SARS-CoV-2 spike S1 protein in urine (Ur-S+). Interestingly, although all NP-PCR+ children were Ur-S-, one child who was NP-PCR- was found to be positive for spike protein in their urine. Of the 23 adults who were Ur-S+, only one individual showed detectable viral RNA in urine. Our analysis further showed that 24% and 21% of adults who were NP-PCR+ had high levels of albumin and cystatin C, respectively, in their urine. Among individuals with albuminuria (>0.3 mg/mg of creatinine), statistical correlation could be found between albumin and spike protein in urine. Conclusions: Together, our data showed that one of four individuals infected with SARS-CoV-2 develop renal abnormalities, such as albuminuria. Awareness about the long-term effect of these findings is warranted.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Adult , COVID-19/diagnosis , Child , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
17.
Med ; 2(3): 263-280.e6, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33521748

ABSTRACT

BACKGROUND: Scaling SARS-CoV-2 testing to meet demands of safe reopenings continues to be plagued by assay costs and supply chain shortages. In response, we developed SalivaDirect, which received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration (FDA). METHODS: We simplified our saliva-based diagnostic test by (1) not requiring collection tubes with preservatives, (2) replacing nucleic acid extraction with a simple enzymatic and heating step, and (3) testing specimens with a dualplex qRT-PCR assay. Moreover, we validated SalivaDirect with reagents and instruments from multiple vendors to minimize supply chain issues. FINDINGS: From our hospital cohort, we show a high positive agreement (94%) between saliva tested with SalivaDirect and nasopharyngeal swabs tested with a commercial qRT-PCR kit. In partnership with the National Basketball Association (NBA) and National Basketball Players Association (NBPA), we tested 3,779 saliva specimens from healthy individuals and detected low rates of invalid (0.3%) and false-positive (<0.05%) results. CONCLUSIONS: We demonstrate that saliva is a valid alternative to swabs for SARS-CoV-2 screening and that SalivaDirect can make large-scale testing more accessible and affordable. Uniquely, we can designate other laboratories to use our sensitive, flexible, and simplified platform under our EUA (https://publichealth.yale.edu/salivadirect/). FUNDING: This study was funded by the NBA and NBPA (N.D.G.), the Huffman Family Donor Advised Fund (N.D.G.), a Fast Grant from Emergent Ventures at the Mercatus Center at George Mason University (N.D.G.), the Yale Institute for Global Health (N.D.G.), and the Beatrice Kleinberg Neuwirth Fund (A.I.K.). C.B.F.V. is supported by NWO Rubicon 019.181EN.004.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Laboratories , SARS-CoV-2/genetics , Saliva
18.
medRxiv ; 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33442706

ABSTRACT

While several clinical and immunological parameters correlate with disease severity and mortality in SARS-CoV-2 infection, work remains in identifying unifying correlates of coronavirus disease 2019 (COVID-19) that can be used to guide clinical practice. Here, we examine saliva and nasopharyngeal (NP) viral load over time and correlate them with patient demographics, and cellular and immune profiling. We found that saliva viral load was significantly higher in those with COVID-19 risk factors; that it correlated with increasing levels of disease severity and showed a superior ability over nasopharyngeal viral load as a predictor of mortality over time (AUC=0.90). A comprehensive analysis of immune factors and cell subsets revealed strong predictors of high and low saliva viral load, which were associated with increased disease severity or better overall outcomes, respectively. Saliva viral load was positively associated with many known COVID-19 inflammatory markers such as IL-6, IL-18, IL-10, and CXCL10, as well as type 1 immune response cytokines. Higher saliva viral loads strongly correlated with the progressive depletion of platelets, lymphocytes, and effector T cell subsets including circulating follicular CD4 T cells (cTfh). Anti-spike (S) and anti-receptor binding domain (RBD) IgG levels were negatively correlated with saliva viral load showing a strong temporal association that could help distinguish severity and mortality in COVID-19. Finally, patients with fatal COVID-19 exhibited higher viral loads, which correlated with the depletion of cTfh cells, and lower production of anti-RBD and anti-S IgG levels. Together these results demonstrated that viral load - as measured by saliva but not nasopharyngeal - is a dynamic unifying correlate of disease presentation, severity, and mortality over time.

19.
Nat Med ; 27(7): 1178-1186, 2021 07.
Article in English | MEDLINE | ID: mdl-33953384

ABSTRACT

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Carrier State/immunology , Female , Humans , Immunity, Humoral , Kinetics , Length of Stay/statistics & numerical data , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
20.
medRxiv ; 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32793924

ABSTRACT

Most currently approved strategies for the collection of saliva for COVID-19 diagnostics require specialized tubes containing buffers promoted for the stabilization of SARS-CoV-2 RNA and virus inactivation. Yet many of these are expensive, in limited supply, and not necessarily validated specifically for viral RNA. While saliva is a promising sample type as it can be reliably self-collected for the sensitive detection of SARS-CoV-2, the expense and availability of these collection tubes are prohibitive to mass testing efforts. Therefore, we investigated the stability of SARS-CoV-2 RNA and infectious virus detection from saliva without supplementation. We tested RNA stability over extended periods of time (2-25 days) and at temperatures representing at-home storage and elevated temperatures which might be experienced when cold chain transport may be unavailable. We found SARS-CoV-2 RNA in saliva from infected individuals is stable at 4°C, room temperature (~19°C), and 30°C for prolonged periods and found limited evidence for viral replication in saliva. This work demonstrates that expensive saliva collection options involving RNA stabilization and virus inactivation buffers are not always needed, permitting the use of cheaper collection options. Affordable testing methods are urgently needed to meet current testing demands and for continued surveillance in reopening strategies.

SELECTION OF CITATIONS
SEARCH DETAIL