Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biochemistry ; 62(12): 1943-1952, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37270808

ABSTRACT

InhA, the Mycobacterium tuberculosis enoyl-ACP reductase, is a target for the tuberculosis (TB) drug isoniazid (INH). InhA inhibitors that do not require KatG activation avoid the most common mechanism of INH resistance, and there are continuing efforts to fully elucidate the enzyme mechanism to drive inhibitor discovery. InhA is a member of the short-chain dehydrogenase/reductase superfamily characterized by a conserved active site Tyr, Y158 in InhA. To explore the role of Y158 in the InhA mechanism, this residue has been replaced by fluoroTyr residues that increase the acidity of Y158 up to ∼3200-fold. Replacement of Y158 with 3-fluoroTyr (3-FY) and 3,5-difluoroTyr (3,5-F2Y) has no effect on kcatapp/KMapp nor on the binding of inhibitors to the open form of the enzyme (Kiapp), whereas both kcatapp/KMapp and Kiapp are altered by seven-fold for the 2,3,5-trifluoroTyr variant (2,3,5-F3Y158 InhA). 19F NMR spectroscopy suggests that 2,3,5-F3Y158 is ionized at neutral pH indicating that neither the acidity nor ionization state of residue 158 has a major impact on catalysis or on the binding of substrate-like inhibitors. In contrast, Ki*app is decreased 6- and 35-fold for the binding of the slow-onset inhibitor PT504 to 3,5-F2Y158 and 2,3,5-F3Y158 InhA, respectively, indicating that Y158 stabilizes the closed form of the enzyme adopted by EI*. The residence time of PT504 is reduced ∼four-fold for 2,3,5-F3Y158 InhA compared to wild-type, and thus, the hydrogen bonding interaction of the inhibitor with Y158 is an important factor in the design of InhA inhibitors with increased residence times on the enzyme.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Isoniazid/chemistry , Isoniazid/pharmacology , Catalytic Domain , Bacterial Proteins/chemistry
2.
Photochem Photobiol Sci ; 20(3): 369-378, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33721272

ABSTRACT

Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm-1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals.


Subject(s)
Flavoproteins/chemistry , Free Radicals/chemistry , Spectrophotometry, Infrared , Tyrosine/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cations/chemistry , Flavoproteins/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Mutagenesis, Site-Directed , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Rhodobacter sphaeroides/metabolism
3.
Biochemistry ; 57(5): 620-630, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29239168

ABSTRACT

The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a noncovalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In this work, we extend our studies of the subpicosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However, significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold among the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to submillisecond time scales and vary by orders of magnitude depending on the different output function of each LOV domain.


Subject(s)
Photoreceptors, Microbial/radiation effects , Photoreceptors, Plant/radiation effects , Spectroscopy, Fourier Transform Infrared/methods , Binding Sites , Crystallography, X-Ray , Cysteine/chemistry , Flavin Mononucleotide/chemistry , Hydrogen Bonding , Models, Molecular , Photobleaching , Photochemistry , Photoreceptors, Microbial/chemistry , Photoreceptors, Plant/chemistry , Protein Conformation , Protein Domains , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/radiation effects , Subtraction Technique
4.
J Mol Biol ; 436(5): 168312, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37827329

ABSTRACT

Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin. The role of this residue has been investigated extensively both experimentally and theoretically. However, its role in the activity of the photoactivated adenylate cyclase, OaPAC has never been addressed. In this work, we applied ultrafast transient visible and infrared spectroscopies to study the photochemistry of the Q48E OaPAC mutant. This mutation altered the primary electron transfer process and switched the enzyme into a permanent 'on' state, able to increase the cAMP levels under dark conditions compared to the cAMP levels of the dark-adapted state of the wild-type OaPAC. Differential scanning calorimetry measurements point to a less compact structure for the Q48E OaPAC mutant. The ensemble of these findings provide insight into the important elements in PACs and how their fine tuning may help in the design of optogenetic devices.


Subject(s)
Adenylyl Cyclases , Bacterial Proteins , Glutamine , Oscillatoria , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/genetics , Adenylyl Cyclases/radiation effects , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/radiation effects , Flavins/chemistry , Flavins/radiation effects , Light , Mutation , Glutamine/genetics , Protein Domains/drug effects , Electron Transport , Enzyme Activation/radiation effects , Oscillatoria/enzymology
5.
ACS Chem Biol ; 17(9): 2643-2654, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36038143

ABSTRACT

The hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from Oscillatoria acuminata (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time. The TRIR results demonstrate the formation of the neutral flavin radical as an intermediate species on the photoactivation pathway which decays to form the signaling state. Using fluorotyrosine analogues to modulate the physical properties of Y6, the TRIR data reveal that a change in the pKa and/or reduction potential of Y6 has a profound effect on the forward reaction, consistent with a mechanism involving proton transfer or proton-coupled electron transfer from Y6 to the electronically excited FAD. Decreasing the pKa from 9.9 to <7.2 and/or increasing the reduction potential by 200 mV of Y6 prevents proton transfer to the flavin and halts the photocycle at FAD•-. The lack of protonation of the anionic flavin radical can be directly linked to photoactivation of the adenylyl cyclase (AC) domain. While the 3F-Y6 and 2,3-F2Y6 variants undergo the complete photocycle and catalyze the conversion of ATP into cAMP, enzyme activity is abolished in the 3,5-F2Y6 and 2,3,5-F3Y6 variants where the photocycle is halted at FAD•-. Our results thus show that proton transfer plays an essential role in initiating the structural reorganization of the AC domain that results in AC activity.


Subject(s)
Adenylyl Cyclases , Flavin-Adenine Dinucleotide , Adenosine Triphosphate , Adenylyl Cyclases/genetics , Amino Acids , Bacterial Proteins/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavins/chemistry , Light , Mutagenesis , Protons , Spectrum Analysis , Tyrosine
6.
ACS Infect Dis ; 6(10): 2592-2603, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32926768

ABSTRACT

The opportunistic human pathogen, A. baumannii, senses and responds to light using the blue light sensing A (BlsA) photoreceptor protein. BlsA is a blue-light-using flavin adenine dinucleotide (BLUF) protein that is known to regulate a wide variety of cellular functions through interactions with different binding partners. Using immunoprecipitation of tagged BlsA in A. baumannii lysates, we observed a number of proteins that interact with BlsA, including several transcription factors. In addition to a known binding partner, the iron uptake regulator Fur, we identified the biofilm response regulator BfmR as a putative BlsA-binding partner. Using microscale thermophoresis, we determined that both BfmR and Fur bind to BlsA with nanomolar binding constants. To better understand how BlsA interacts with and regulates these transcription factors, we solved the X-ray crystal structures of BlsA in both a ground (dark) state and a photoactivated light state. Comparison of the light- and dark-state structures revealed that, upon photoactivation, the two α-helices comprising the variable domain of BlsA undergo a distinct conformational change. The flavin-binding site, however, remains largely unchanged from dark to light. These structures, along with docking studies of BlsA and Fur, reveal key mechanistic details about how BlsA propagates the photoactivation signal between protein domains and on to its binding partner. Taken together, our structural and biophysical data provide important insights into how BlsA controls signal transduction in A. baumannii and provides a likely mechanism for blue-light-dependent modulation of biofilm formation and iron uptake.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins/genetics , Biofilms , Humans , Iron , Light
7.
J Phys Chem B ; 123(45): 9592-9597, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31596584

ABSTRACT

Real-time observation of structure changes associated with protein function remains a major challenge. Ultrafast pump-probe methods record dynamics in light activated proteins, but the assignment of spectroscopic observables to specific structure changes can be difficult. The BLUF (blue light using flavin) domain proteins are an important class of light sensing flavoprotein. Here, we incorporate the unnatural amino acid (UAA) azidophenylalanine (AzPhe) at key positions in the H-bonding environment of the isoalloxazine chromophore of two BLUF domains, namely, PixD and AppABLUF; both proteins retain the red-shift on irradiation characteristic of photoactivity. Steady state and ultrafast time resolved infrared difference measurements of the azido mode reveal site-specific information on the nature and dynamics of light driven structure change. AzPhe dynamics are thus shown to be an effective probe of BLUF domain photoactivation, revealing significant differences between the two proteins and a differential response of the two sites to chromophore excitation.


Subject(s)
Azides/chemistry , Flavoproteins/chemistry , Molecular Probes/chemistry , Phenylalanine/analogs & derivatives , Amino Acid Substitution , Amino Acids/chemistry , Flavins/chemistry , Flavoproteins/genetics , Flavoproteins/radiation effects , Hydrogen Bonding , Light , Mutation , Phenylalanine/chemistry , Protein Conformation/radiation effects , Protein Domains/radiation effects , Protein Structure, Tertiary/radiation effects , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL