Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 356: 120620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522279

ABSTRACT

Field drainage causes habitat loss, alters natural flow regimes, and impairs water quality. Still, drainage ditches often are last remnants of aquatic and wetland habitats in agricultural landscapes and as such, can be important for local biodiversity. Two-stage channels are considered as a greener choice for conventional ditches, as they are constructed to mimic the structure of natural lowland streams providing a channel for drainage water and mechanisms to decrease diffuse loading. Two-stage channels could also benefit local biodiversity and ecosystem functions, but existing information on their ecological benefits is scarce and incomplete. We collected environmental and biological data from six agricultural stream systems in Finland each with consequent sections of a conventional ditch and a two-stage channel to study the potential of two-stage channels to enhance aquatic and riparian biodiversity and ecological functions. Biological data included samples of stream invertebrates, diatoms and plants and riparian beetles and plants. Overall, both section types were highly dominated by few core taxa for most of the studied organism groups. Riparian plant and invertebrate communities seemed to benefit from the two-stage channel structure with adjacent floodplains and drier ditch banks. In addition, two-stage channel sections had higher aquatic plant diversity, algal productivity, and decomposition rate, but lower stream invertebrate and diatom diversity. Two-stage channel construction did not diversify the structure of stream channels which is likely one explanation for the lack of positive effects on benthic diversity. However, both section types harbored unique taxa found only in one of the two types in all studied organism groups resulting in higher local gamma diversity. Thus, two-stage channels enhanced local biodiversity in agricultural landscapes. Improvements especially in aquatic biodiversity might be achieved by increasing the heterogeneity of in-stream habitat structure and with further efforts to decrease nutrient and sediment loads.


Subject(s)
Diatoms , Ecosystem , Animals , Biodiversity , Invertebrates , Plants , Wetlands , Rivers/chemistry
2.
Ecol Appl ; 26(7): 2116-2129, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755727

ABSTRACT

Stream ecosystems are affected by multiple abiotic stressors, and species responses to simultaneous stressors may differ from those predicted based on single-stressor responses. Using 12 semi-natural stream channels, we examined the individual and interactive effects of flow level (low or high flow) and addition of fine sediments (grain size <2 mm) on key ecosystem processes (leaf breakdown, algal biomass accrual) and benthic macroinvertebrate and fungal communities. Both stressors had mostly independent effects on biological responses, with sand addition being the more influential of the two. Sand addition decreased algal biomass and microbe-mediated leaf breakdown significantly, whereas invertebrate shredder-mediated breakdown only responded to flow level. Macroinvertebrate community composition responded significantly to both stressors. Fungal biomass decreased and shredder abundance increased when sand was added; thus, organisms at different trophic levels can exhibit highly variable responses to the same stressor. Terrestrial endophytic fungi were abundant in low-flow flumes where leaf mass loss was also highest, indicating that terrestrial endophytes may contribute importantly to leaf decomposition in the aquatic environment. Leaf breakdown rates depended on the identity and abundance of the dominant decomposer species, suggesting that the effects of anthropogenic activities on ecosystem processes may be driven by changes in the abundance of a few key species. The few observed interactive effects were all antagonistic (i.e., less than the sum of the individual effects); for example, increased flow stimulated algal biomass accumulation but this effect was largely cancelled by sand. While our finding that sand and stream flow did not have strong synergistic effects can be considered reassuring for management, future experiments should manipulate these and other human stressors in experiments that run for much longer periods, thus focusing on the long-term impacts of multiple simultaneously operating stressors.


Subject(s)
Ecosystem , Geologic Sediments , Rivers , Water Movements , Animals , Biomass , Environmental Monitoring/methods , Finland , Fungi/physiology , Geologic Sediments/chemistry , Invertebrates/physiology , Nitrogen/chemistry , Phosphorus/chemistry , Plant Leaves , Plants/classification , Rivers/chemistry , Temperature
3.
Front Microbiol ; 10: 651, 2019.
Article in English | MEDLINE | ID: mdl-31001228

ABSTRACT

Biomass production and decomposition are key processes in ecology, where plants are primarily responsible for production and microbes act in decomposition. Trees harbor foliar microfungi living on and inside leaf tissues, epiphytes, and endophytes, respectively. Early researchers hypothesized that all fungal endophytes are parasites or latent saprophytes, which slowly colonize the leaf tissues for decomposition. While this has been proven for some strains in the terrestrial environment, it is not known whether foliar microfungi from terrestrial origin can survive or perform decomposition in the aquatic environment. On the other hand, aquatic hyphomycetes, fungi which decompose organic material in stream environments, have been suggested to have a plant-associated life phase. Our aim was to study how much the fungal communities of leaves and litter submerged in streams overlap. Ergosterol content on litter, which is an estimator of fungal biomass, was 5-14 times higher in submerged litter than in senescent leaves, indicating active fungal colonization. Leaves generally harbored a different microbiome prior to than after submergence in streams. The Chao1 richness was significantly higher (93.7 vs. 60.7, p = 0.004) and there were more observed operational taxonomic units (OTUs) (78.3 vs. 47.4, p = 0.004) in senescent leaves than in stream-immersed litter. There were more Leotiomycetes (9%, p = 0.014) in the litter. We identified a group of 35 fungi (65%) with both plant- and water-associated lifestyles. Of these, eight taxa had no previous references to water, such as lichenicolous fungi. Six OTUs were classified within Glomeromycota, known as obligate root symbionts with no previous records from leaves. Five members of Basidiomycota, which are rare in aquatic environments, were identified in the stream-immersed litter only. Overall, our study demonstrates that foliar microfungi contribute to fungal diversity in submerged litter.

SELECTION OF CITATIONS
SEARCH DETAIL