Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 96(8): e29829, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109810

ABSTRACT

Lumpy skin disease virus (LSDV), a double-stranded DNA virus from the Capripoxvirus genus, primarily affects Bos indicus, Bos taurus breeds, and water buffalo. Arthropod vectors, including mosquitoes and biting flies, are the main LSDV transmitters. Although LSDV is not zoonotic, this study unexpectedly detected LSDV reads in the upper respiratory tract microbiome of humans from rural and urban areas in Maharashtra, India. Nasopharyngeal and oropharyngeal swab samples collected for SARS-CoV-2 surveillance underwent whole-genome metagenomics sequencing, revealing LSDV reads in 25% of samples. Split kmer analysis provided insights into sample relatedness despite the low coverage of LSDV reads with the reference genome. Our findings, which include the detection of LSDV contigs aligning to specific locations on the reference genome, suggest a common source for LSDV reads, potentially shared water sources, or milk/milk products. Further investigation is needed to ascertain the mode of transmission and reason for the detection of LSDV reads in human upper respiratory tract.


Subject(s)
Lumpy skin disease virus , Metagenomics , Microbiota , Humans , Microbiota/genetics , Metagenomics/methods , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Oropharynx/virology , Oropharynx/microbiology , Animals , India , Genome, Viral/genetics , Nasopharynx/virology , Nasopharynx/microbiology , Respiratory System/microbiology , Respiratory System/virology , Male , Whole Genome Sequencing , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/classification , Female , Adult , COVID-19/diagnosis , COVID-19/virology , Lumpy Skin Disease/virology
2.
Virus Res ; 344: 199365, 2024 06.
Article in English | MEDLINE | ID: mdl-38527669

ABSTRACT

Reading the viral genome through whole genome sequencing (WGS) enables the detection of changes in the viral genome. The rapid changes in the SARS-CoV-2 viral genome may cause immune escape leading to an increase in the pathogenicity or infectivity. Monitoring mutations through genomic surveillance helps understand the amino acid changes resulting from the mutation. These amino acid changes, especially in the spike glycoprotein, may have implications on the pathogenicity of the virus by rendering it immune-escape. The region of Vidarbha in Maharashtra represents 31.6 % of the state's total area. It holds 21.3 % of the total population. In total, 7457 SARS-CoV-2 positive samples belonging to 16 Indian States were included in the study, out of which 3002 samples passed the sequencing quality control criteria. The metadata of 7457 SARS-CoV-2 positive samples included in the study was sourced from the Integrated Health Information Platform (IHIP). The metadata of 3002 sequenced samples, including the FASTA sequence, was submitted to the Global Initiative on Sharing Avian Influenza Data (GISAID) and the Indian biological data centre (IBDC). This study identified 104 different SARS-CoV-2 pango-lineages classified into 19 clades. We have also analysed the mutation profiles of the variants found in the study, which showed eight mutations of interest, including L18F, K417N, K417T, L452R, S477N, N501Y, P681H, P681R, and mutation of concern E484K in the spike glycoprotein region. The study was from November 2020 to December 2022, making this study the most comprehensive genomic surveillance of SARS-CoV-2 conducted for the region.


Subject(s)
COVID-19 , Genome, Viral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Whole Genome Sequencing , India/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19/epidemiology , Humans , Spike Glycoprotein, Coronavirus/genetics , Phylogeny , Female , Male , Adult , Middle Aged , Aged , Adolescent , Child
3.
Front Public Health ; 11: 1117602, 2023.
Article in English | MEDLINE | ID: mdl-37441634

ABSTRACT

Being the second most populous country in the world, India presents valuable lessons for the world about dealing with the SARS-CoV-2 pandemic. From this perspective, we attempted a retrospective evaluation of India's SARS-CoV-2 genomic surveillance strategy and also gave some recommendations for undertaking effective genomic surveillance. The dynamics of the COVID-19 pandemic are continuously evolving, and there is a dire need to modulate the genomic surveillance strategy accordingly. The pandemic is now settling towards a low positivity rate scenario, so it is required to revise the practices and policies formulated for a high positivity rate scenario. The perspective also recommends adopting a decentralised approach for SARS-CoV-2 genomic surveillance with a focus on optimising the workflow of SARS-CoV-2 genomic surveillance to ensure early detection of emerging variants, especially in the low positivity rate scenario. The perspective emphasises a key observation that the SARS-CoV-2 genomic surveillance is an important mitigation effort during the pandemic, the guards of such mitigation efforts should not be lowered during the low positivity rate scenario. We attempt to highlight the limitations faced by the Indian healthcare administration during the SARS-CoV-2 genomic surveillance and, simultaneously, suggest policy interventions derived from our first-hand experience, which may be implementable in a vast, populated country like India.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Retrospective Studies , COVID-19/epidemiology , Genomics , India/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL