Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mol Cell Biochem ; 478(4): 927-937, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36114991

ABSTRACT

Activated cardiac fibroblasts are involved in both reparative wound healing and maladaptive cardiac fibrosis after myocardial infarction (MI). Recent evidence suggests that PU.1 inhibition can enable reprogramming of profibrotic fibroblasts to quiescent fibroblasts, leading to attenuation of pathologic fibrosis in several fibrosis models. The role of PU.1 in acute MI has not been tested. We designed a randomized, blinded study to evaluate whether DB1976, a PU.1 inhibitor, attenuates cardiac function deterioration and fibrosis in a murine model of MI. A total of 44 Ai9 periostin-Cre transgenic mice were subjected to 60 min of coronary occlusion followed by reperfusion. At 7 days after MI, 37 mice were randomly assigned to control (vehicle) or DB1976 treatment and followed for 2 weeks. Left ventricular ejection fraction (EF), assessed by echocardiography, did not differ between the two groups before or after treatment (final EF, 33.3 ± 1.0% in control group and 31.2 ± 1.3% in DB1976 group). Subgroup analysis of female and male mice showed the same results. There were no differences in cardiac scar (trichrome stain) and fibrosis (interstitial/perivascular collagen; picrosirius stain) between groups. Results from the per-protocol dataset (including mice with pre-treatment EF < 35% only) were consistent with the full dataset. In conclusion, this randomized, blinded study demonstrates that DB1976, a PU.1 inhibitor, does not attenuate cardiac functional deterioration or cardiac fibrosis in a mouse model of MI caused by coronary occlusion/reperfusion.


Subject(s)
Coronary Occlusion , Myocardial Infarction , Mice , Male , Female , Animals , Stroke Volume , Coronary Occlusion/pathology , Disease Models, Animal , Ventricular Function, Left , Myocardial Infarction/pathology , Mice, Transgenic , Fibrosis , Myocardium/pathology , Mice, Inbred C57BL , Ventricular Remodeling
2.
Mol Cell Biochem ; 476(11): 4093-4106, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34287784

ABSTRACT

Intramyocardial injection of synthetic microRNAs (miRs) has recently been reported to be beneficial after myocardial infarction (MI). We conducted a randomized blinded study to evaluate the efficacy and reproducibility of this strategy in a mouse model of reperfused MI using rigorous methodology. Mice undergoing a 60-min coronary occlusion followed by reperfusion were randomly assigned to control miR, hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p mimic treatment. Intramyocardial injections of miRs were performed in the border zone right after reperfusion. At 8 weeks after MI, there were no significant differences in ejection fraction (EF) among groups (EF = 27.1 ± 0.4% in control group [n = 6] and 25.9 ± 0.5%, 26.0 ± 0.8%, and 26.6 ± 0.6% in hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p groups, respectively [n = 9 each]). Net change (delta) in EF at 8 weeks compared with day 3 after MI was - 4.1% in control and - 3.2%, - 2.4%, and - 0.4% in the miR-treated groups (P = NS). Assessment of cardiac function by hemodynamic studies (a method independent of echocardiography) confirmed that there was no difference in left ventricular systolic or diastolic function among groups. Consistent with the functional data, histological analysis showed no difference in scar size, cardiomyocyte area, capillary density, collagen content, or apoptosis among groups. In conclusion, this randomized, blinded study demonstrates that intramyocardial injection of a single dose of synthetic hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p mimic does not improve cardiac function or remodeling in a murine model of reperfused MI. The strategy of using synthetic miR mimics for cardiac repair after MI needs to be evaluated with rigorous preclinical studies before its potential clinical translation.


Subject(s)
Echocardiography/drug effects , MicroRNAs/pharmacology , Myocardial Infarction/drug therapy , Ventricular Function, Left/drug effects , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , MicroRNAs/administration & dosage , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Treatment Outcome
3.
Mol Cell Biochem ; 476(5): 2135-2148, 2021 May.
Article in English | MEDLINE | ID: mdl-33547546

ABSTRACT

In the field of cell therapy for heart disease, a new paradigm of repeated dosing of cells has recently emerged. However, the lack of a repeatable cell delivery method in preclinical studies in rodents is a major obstacle to investigating this paradigm. We have established and standardized a method of echocardiography-guided percutaneous left ventricular intracavitary injection (echo-guided LV injection) as a cell delivery approach in infarcted mice. Here, we describe the method in detail and address several important issues regarding it. First, by integrating anatomical and echocardiographic considerations, we have established strategies to determine a safe anatomical window for injection in infarcted mice. Second, we summarize our experience with this method (734 injections). The overall survival rate was 91.4%. Third, we examined the efficacy of this cell delivery approach. Compared with vehicle treatment, cardiac mesenchymal cells (CMCs) delivered via this method improved cardiac function assessed both echocardiographically and hemodynamically. Furthermore, repeated injections of CMCs via this method yielded greater cardiac function improvement than single-dose administration. Echo-guided LV injection is a feasible, reproducible, relatively less invasive and effective delivery method for cell therapy in murine models of heart disease. It is an important approach that could move the field of cell therapy forward, especially with regard to repeated cell administrations.


Subject(s)
Cell Transplantation , Echocardiography , Heart Ventricles/diagnostic imaging , Myocardial Infarction , Animals , Disease Models, Animal , Female , Mice , Myocardial Infarction/diagnosis , Myocardial Infarction/therapy
4.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808720

ABSTRACT

Using a murine model of chronic ischemic cardiomyopathy caused by an old myocardial infarction (MI), we have previously found that three doses of 1 × 106 c-kit positive cardiac cells (CPCs) are more effective than a single dose of 1 × 106 cells. The goal of this study was to determine whether the beneficial effects of three doses of CPCs (1 × 106 cells each) can be fully replicated by a single combined dose of 3 × 106 CPCs. Mice underwent a 60-min coronary occlusion; after 90 days of reperfusion, they received three echo-guided intraventricular infusions at 5-week intervals: (1) vehicle × 3; (2) one combined dose of CPCs (3 × 106) and vehicle × 2; or (3) three doses of CPCs (1 × 106 each). In the combined-dose group, left ventricular ejection fraction (LVEF) improved after the 1st CPC infusion, but not after the 2nd and 3rd (vehicle) infusions. In contrast, in the multiple-dose group, LVEF increased after each CPC infusion; at the final echo, LVEF averaged 35.2 ± 0.6% (p < 0.001 vs. the vehicle group, 27.3 ± 0.2%). At the end of the study, the total cumulative change in EF from pretreatment values was numerically greater in the multiple-dose group (6.6 ± 0.6%) than in the combined-dose group (4.8 ± 0.8%), although the difference was not statistically significant (p = 0.08). Hemodynamic studies showed that several parameters of LV function in the multiple-dose group were numerically greater than in the combined-dose group (p = 0.08 for the difference in LVEF). Compared with vehicle, cardiomyocyte cross-sectional area was reduced only in the multiple-dose group (-32.7%, 182.6 ± 15.1 µm2 vs. 271.5 ± 27.2 µm2, p < 0.05, in the risk region and -28.5%, 148.5 ± 12.1 µm2 vs. 207.6 ± 20.5 µm2, p < 0.05, in the noninfarcted region). LV weight/body weight ratio and LV weight/tibia length ratios were significantly reduced in both cell treated groups vs. the vehicle group, indicating the attenuation of LV hypertrophy; however, the lung weight/body weight ratio was significantly reduced only in the multiple-dose group, suggesting decreased pulmonary congestion. Taken together, these results indicate that in mice with chronic ischemic cardiomyopathy, the beneficial effects of three doses of CPCs on LV function and hypertrophy cannot be fully replicated with a single dose, notwithstanding the fact that the total number of cells delivered with one or three doses is the same. Thus, it is the multiplicity of doses, and not the total number of cells, that accounts for the superiority of the repeated-dose paradigm. This study supports the idea that the efficacy of cell therapy in heart failure can be augmented by repeated administrations.


Subject(s)
Cardiomyopathies/etiology , Gene Dosage , Myocardial Ischemia/complications , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-kit/genetics , Animals , Biomarkers , Biopsy , Body Weights and Measures , Cardiomyopathies/diagnosis , Cardiomyopathies/metabolism , Cardiomyopathies/therapy , Cells, Cultured , Disease Models, Animal , Echocardiography , Fibrosis , Heart Function Tests , Hemodynamics , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Mice , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Ischemia/etiology , Proto-Oncogene Proteins c-kit/metabolism
5.
Am J Physiol Heart Circ Physiol ; 319(1): H109-H122, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32442025

ABSTRACT

Although cell therapy-mediated cardiac repair offers promise for treatment/management of heart failure, lack of fundamental understanding of how cell therapy works limits its translational potential. In particular, whether reparative cells from failing hearts differ from cells derived from nonfailing hearts remains unexplored. Here, we assessed differences between cardiac mesenchymal cells (CMC) derived from failing (HF) versus nonfailing (Sham) hearts and whether the source of donor cells (i.e., from HF vs. Sham) limits reparative capacity, particularly when administered late after infarction. To determine the impact of the donor source of CMCs, we characterized the transcriptional profile of CMCs isolated from sham (Sham-CMC) and failing (HF-CMC) hearts. RNA-seq analysis revealed unique transcriptional signatures in Sham-CMC and HF-CMC, suggesting that the donor source impacts CMC. To determine whether the donor source affects reparative potential, C57BL6/J female mice were subjected to 60 min of regional myocardial ischemia and then reperfused for 35 days. In a randomized, controlled, and blinded fashion, vehicle, HF-CMC, or Sham-CMC were injected into the lumen of the left ventricle at 35 days post-MI. An additional 5 weeks later, cardiac function was assessed by echocardiography, which indicated that delayed administration of Sham-CMC and HF-CMC attenuated ventricular dilation. We also determined whether Sham-CMC and HF-CMC treatments affected ventricular histopathology. Our data indicate that the donor source (nonfailing vs. failing hearts) affects certain aspects of CMC, and these insights may have implications for future studies. Our data indicate that delayed administration of CMC limits ventricular dilation and that the source of CMC may influence their reparative actions.NEW & NOTEWORTHY Most preclinical studies have used only cells from healthy, nonfailing hearts. Whether donor condition (i.e., heart failure) impacts cells used for cell therapy is not known. We directly tested whether donor condition impacted the reparative effects of cardiac mesenchymal cells in a chronic model of myocardial infarction. Although cells from failing hearts differed in multiple aspects, they retained the potential to limit ventricular remodeling.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/pathology , Myocardial Reperfusion Injury/therapy , Ventricular Function , Animals , Cells, Cultured , Female , Heart Ventricles/cytology , Heart Ventricles/pathology , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myocardial Contraction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Transcriptome
6.
Basic Res Cardiol ; 114(5): 32, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278427

ABSTRACT

The role of cyclooxygenase-2 (COX-2) in cardiovascular biology remains controversial. Although COX-2 has been reported to mediate the protective actions of late preconditioning, other studies show that it is also an important mediator of inflammation, toxic shock, and apoptosis, resulting in significant dysfunction and injury in several tissues. To determine whether increased myocardial COX-2, in itself, is protective, cardiac-specific, inducible (Tet-off) COX-2 transgenic (iCOX-2 TG) mice were generated by crossbreeding α-MyHC-tTA transgenic mice (tetracycline transactivator [tTA]) with CMV/TRE-COX-2 transgenic mice. Three months after COX-2 induction, mice were subjected to a 30-min coronary occlusion and 24 h of reperfusion. Three different lines (L5, L7, and L8) of iCOX-2 TG mice were studied; in all three lines, infarct size was markedly reduced compared with WT mice: L5 TG/TG 23.4 ± 5.8 vs. WT/WT 48.5 ± 6.1% of risk region; L7 TG/TG 23.2 ± 6.2 vs. WT/WT 53.3 ± 3.6%; and L8 TG/TG 23.5 ± 2.8 vs. WT/WT 52.7 ± 4.6% (P < 0.05 for each). COX-2 inhibition with NS-398 completely abolished the cardioprotection provided by COX-2 overexpression. This study for the first time utilizes an inducible cardiac-specific COX-2 overexpression system to examine the role of this enzyme in ischemia/reperfusion injury in vivo. We demonstrate that induced cardiac-specific overexpression of COX-2 exerts a potent cardioprotective effect against myocardial infarction in mice, and that chronic COX-2 overexpression is not associated with any apparent deleterious effects. We also show that PGE2 levels are upregulated in COX-2 overexpressing cardiac tissue, confirming increased enzyme activity. Finally, we have developed a valuable genetic tool to further our understanding of the role of COX-2 in ischemia/reperfusion injury and other settings. The concept that COX-2 is chronically protective has important therapeutic implications for studies of long-term gene therapy aimed at increasing myocardial COX-2 content as well as other COX-2- based strategies.


Subject(s)
Cyclooxygenase 2/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/enzymology , Animals , Mice , Mice, Transgenic , Myocytes, Cardiac/enzymology
7.
Basic Res Cardiol ; 112(2): 18, 2017 03.
Article in English | MEDLINE | ID: mdl-28210871

ABSTRACT

We have recently demonstrated that repeated administrations of c-kitPOS cardiac progenitor cells (CPCs) have cumulative beneficial effects in rats with old myocardial infarction (MI), resulting in markedly greater improvement in left ventricular (LV) function compared with a single administration. To determine whether this paradigm applies to other species and cell types, mice with a 3-week-old MI received one or three doses of cardiac mesenchymal cells (CMCs), a novel cell type that we have recently described. CMCs or vehicle were infused percutaneously into the LV cavity, 14 days apart. Compared with vehicle-treated mice, the single-dose group exhibited improved LV ejection fraction (EF) after the 1st infusion (consisting of CMCs) but not after the 2nd and 3rd (vehicle). In contrast, in the multiple-dose group, LV EF improved after each CMC infusion, so that at the end of the study, LV EF averaged 35.5 ± 0.7% vs. 32.7 ± 0.6% in the single-dose group (P < 0.05). The multiple-dose group also exhibited less collagen in the non-infarcted region vs. the single-dose group. Engraftment and differentiation of CMCs were negligible in both groups, indicating paracrine effects. These results demonstrate that, in mice with ischemic cardiomyopathy, the beneficial effects of three doses of CMCs are significantly greater than those of one dose, supporting the concept that multiple treatments are necessary to properly evaluate the full therapeutic potential of cell therapy. Thus, the repeated-treatment paradigm is not limited to c-kit POS CPCs or to rats, but applies to other cell types and species. The generalizability of this concept dramatically augments its significance.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction , Animals , Disease Models, Animal , Echocardiography , Female , Immunohistochemistry , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/cytology , Random Allocation
8.
Int J Cardiol ; 340: 68-78, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34400167

ABSTRACT

The purpose of this study was to assess whether short-term, mild exercise induces protection against myocardial infarction and, if so, what role the eNOS-PKCε-iNOS axis plays. Mice were subjected to 2 bouts/day of treadmill exercise (60 min at 15 m/min) for 2 consecutive days. At 24 h after the last bout of exercise, mice were subjected to a 30-min coronary artery occlusion and 24 h of reperfusion. In the exercise group (group III, wild-type mice), infarct size (25.5 ± 8.8% of risk region) was significantly (P < 0.05) reduced compared with the control groups (sham exercise, group II [63.4 ± 7.8%] and acute myocardial infarction, group I [58.6 ± 7.0%]). This effect was abolished by pretreatment with the NOS inhibitor L-NA (group VI, 56.1 ± 16.2%) and the PKC inhibitor chelerythrine (group VIII, 57.9 ± 12.5%). Moreover, the late PC effect of exercise was completely abrogated in eNOS-/- mice (group XIII, 61.0 ± 11.2%). The myocardial phosphorylated eNOS at Ser-1177 was significantly increased at 30 min after treadmill training (exercise group) compared with sham-exercised hearts. PKCε translocation was significantly increased at 30 min after exercise in WT mice but not in eNOS-/- mice. At 24 h after exercise, iNOS protein was upregulated compared with sham-exercised hearts. The protection of late PC was abrogated in iNOS-/- mice (group XVI, 56.4 ± 12.9%) and in wildtype mice given the selective iNOS inhibitor 1400 W prior to ischemia (group X 62.0 ± 8.8% of risk region). We conclude that 1) even short, mild exercise induces a delayed PC effect that affords powerful protection against infarction; 2) this cardioprotective effect is dependent on activation of eNOS, eNOS-derived NO generation, and subsequent PKCε activation during PC; 3) the translocation of PKCε is dependent on eNOS; 4) the protection 24 h later is dependent on iNOS activity. Thus, eNOS is the trigger and iNOS the mediator of PC induced by mild exercise.


Subject(s)
Ischemic Preconditioning, Myocardial , Myocardial Infarction , Animals , Mice , Myocardial Infarction/prevention & control , Myocardium , Nitric Oxide , Nitric Oxide Synthase Type II , Nitric Oxide Synthase Type III , Protein Kinase C-epsilon
9.
Front Cell Dev Biol ; 9: 662415, 2021.
Article in English | MEDLINE | ID: mdl-34124043

ABSTRACT

Stem/progenitor cells are usually cultured at atmospheric O2 tension (21%); however, since physiologic O2 tension in the heart is ∼5%, using 21% O2 may cause oxidative stress and toxicity. Cardiac mesenchymal cells (CMCs), a newly discovered and promising type of progenitor cells, are effective in improving left ventricle (LV) function after myocardial infarction (MI). We have previously shown that, compared with 21% O2, culture at 5% O2 increases CMC proliferation, telomerase activity, telomere length, and resistance to severe hypoxia in vitro. However, it is unknown whether these beneficial effects of 5% O2 in vitro translate into greater therapeutic efficacy in vivo in the treatment of heart failure. Thus, murine CMCs were cultured at 21% or 5% O2. Mice with heart failure caused by a 60-min coronary occlusion followed by 30 days of reperfusion received vehicle, 21% or 5% O2 CMCs via echocardiography-guided intraventricular injection. After 35 days, the improvement in LV ejection fraction effected by 5% O2 CMCs was > 3 times greater than that afforded by 21% O2 CMCs (5.2 vs. 1.5 units, P < 0.01). Hemodynamic studies (Millar catheter) yielded similar results both for load-dependent (LV dP/dt) and load-independent (end-systolic elastance) indices. Thus, two independent approaches (echo and hemodynamics) demonstrated the therapeutic superiority of 5% O2 CMCs. Further, 5% O2 CMCs, but not 21% O2 CMCs, significantly decreased scar size, increased viable myocardium, reduced LV hypertrophy and dilatation, and limited myocardial fibrosis both in the risk and non-infarcted regions. Taken together, these results show, for the first time, that culturing CMCs at physiologic (5%) O2 tension provides superior therapeutic efficacy in promoting cardiac repair in vivo. This concept may enhance the therapeutic potential of CMCs. Further, culture at 5% O2 enables greater numbers of cells to be produced in a shorter time, thereby reducing costs and effort and limiting cell senescence. Thus, the present study has potentially vast implications for the field of cell therapy.

10.
Stem Cell Rev Rep ; 17(2): 604-615, 2021 04.
Article in English | MEDLINE | ID: mdl-33118146

ABSTRACT

Repeated doses of c-kit+ cardiac progenitor cells (CPCs) are superior to a single dose in improving LV function in rats with old myocardial infarction (MI). However, this concept needs testing in different species to determine whether it is generalizable. We used a new murine model of chronic ischemic cardiomyopathy whose unique feature is that cell therapy was started late (3 months) after MI. Mice received three echo-guided intraventricular infusions, 5 weeks apart, of vehicle, CPCs × 1, or CPCs × 3. Echocardiography demonstrated that the single-dose group exhibited improved LV ejection fraction (EF) after the 1st infusion (CPCs), but not after the 2nd and 3rd (vehicle). In contrast, in the multiple-dose group LVEF continued to improve, so that the final value was greater than in vehicle or single-dose groups (P < 0.05). Hemodynamic studies showed that compared with vehicle, both preload-dependent and preload-independent functional parameters were significantly increased in the multiple-dose group but not in the single-dose group. Thus, two independent methods of functional assessment (echocardiography and hemodynamic studies) consistently demonstrated the superiority of three doses of CPCs vs. one dose. Compared with the single-dose group, the multiple-dose group exhibited less LV hypertrophy, as evidenced by a greater reduction in LV/body weight ratio and cardiomyocyte cross-sectional area. Furthermore, unlike the single dose, three CPC doses reduced myocardial inflammatory cells in the risk region. This is the first study of echo-guided intraventricular infusion of CPCs in mice with chronic ischemic cardiomyopathy. The results demonstrate that the beneficial effects of three CPC doses are greater than those of one dose, supporting the concept that multiple treatments are necessary to properly evaluate cell therapy. Our findings indicate that this concept applies not only to rat models but also to murine models. The generalizability of this strategy greatly enhances its importance and provides a rationale for large animal studies. Graphical abstract.


Subject(s)
Cardiomyopathies , Injections, Intraventricular , Myocardial Infarction , Myocardium/cytology , Stem Cells , Animals , Cardiomyopathies/therapy , Disease Models, Animal , Mice , Myocardial Infarction/therapy
11.
J Am Coll Cardiol ; 69(14): 1824-1838, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28385312

ABSTRACT

BACKGROUND: The authors previously reported that the c-kit-positive (c-kitPOS) cells isolated from slowly adhering (SA) but not from rapidly adhering (RA) fractions of cardiac mesenchymal cells (CMCs) are effective in preserving left ventricular (LV) function after myocardial infarction (MI). OBJECTIVES: This study evaluated whether adherence to plastic alone, without c-kit sorting, was sufficient to isolate reparative CMCs. METHODS: RA and SA CMCs were isolated from mouse hearts, expanded in vitro, characterized, and evaluated for therapeutic efficacy in mice subjected to MI. RESULTS: Morphological and phenotypic analysis revealed that murine RA and SA CMCs are indistinguishable; nevertheless, transcriptome analysis showed that they possess fundamentally different gene expression profiles related to factors that regulate post-MI LV remodeling and repair. A similar population of SA CMCs was isolated from porcine endomyocardial biopsy samples. In mice given CMCs 2 days after MI, LV ejection fraction 28 days later was significantly increased in the SA CMC group (31.2 ± 1.0% vs. 24.7 ± 2.2% in vehicle-treated mice; p < 0.05) but not in the RA CMC group (24.1 ± 1.2%). Histological analysis showed reduced collagen deposition in the noninfarcted region in mice given SA CMCs (7.6 ± 1.5% vs. 14.5 ± 2.8% in vehicle-treated mice; p < 0.05) but not RA CMCs (11.7 ± 1.7%), which was associated with reduced infiltration of inflammatory cells (14.1 ± 1.6% vs. 21.3 ± 1.5% of total cells in vehicle and 19.3 ± 1.8% in RA CMCs; p < 0.05). Engraftment of SA CMCs was negligible, which implies a paracrine mechanism of action. CONCLUSIONS: We identified a novel population of c-kit-negative reparative cardiac cells (SA CMCs) that can be isolated with a simple method based on adherence to plastic. SA CMCs exhibited robust reparative properties and offered numerous advantages, appearing to be more suitable than c-kitPOS cardiac progenitor cells for widespread clinical therapeutic application.


Subject(s)
Cell Adhesion , Cell Separation/methods , Mesenchymal Stem Cells/metabolism , Myocardium/cytology , Animals , Cells, Cultured , Gene Expression Profiling , Mice , Proto-Oncogene Proteins c-kit/metabolism , Regeneration , Swine
SELECTION OF CITATIONS
SEARCH DETAIL