Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Cell Sci ; 131(19)2018 10 02.
Article in English | MEDLINE | ID: mdl-30185523

ABSTRACT

Cell migration is central to evoking a potent immune response. Dendritic cell (DC) migration to lymph nodes is dependent on the interaction of C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b), expressed by DCs, with podoplanin, expressed by lymph node stromal cells, although the underlying molecular mechanisms remain elusive. Here, we show that CLEC-2-dependent DC migration is controlled by tetraspanin CD37, a membrane-organizing protein. We identified a specific interaction between CLEC-2 and CD37, and myeloid cells lacking CD37 (Cd37-/-) expressed reduced surface CLEC-2. CLEC-2-expressing Cd37-/- DCs showed impaired adhesion, migration velocity and displacement on lymph node stromal cells. Moreover, Cd37-/- DCs failed to form actin protrusions in a 3D collagen matrix upon podoplanin-induced CLEC-2 stimulation, phenocopying CLEC-2-deficient DCs. Microcontact printing experiments revealed that CD37 is required for CLEC-2 recruitment in the membrane to its ligand podoplanin. Finally, Cd37-/- DCs failed to inhibit actomyosin contractility in lymph node stromal cells, thus phenocopying CLEC-2-deficient DCs. This study demonstrates that tetraspanin CD37 controls CLEC-2 membrane organization and provides new molecular insights into the mechanisms underlying CLEC-2-dependent DC migration.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Antigens, CD/metabolism , Antigens, Neoplasm/metabolism , Cell Movement , Dendritic Cells/cytology , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Tetraspanins/metabolism , Actomyosin/metabolism , Animals , Cell Adhesion , Cell Surface Extensions/metabolism , Endothelial Cells/metabolism , HEK293 Cells , Humans , Interleukin-6/biosynthesis , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Protein Binding , RAW 264.7 Cells , Tetraspanins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL