ABSTRACT
Arc, a master regulator of synaptic plasticity, contains sequence elements that are evolutionarily related to retrotransposon Gag genes. Two related papers in this issue of Cell show that Arc retains retroviral-like capsid-forming ability and can transmit mRNA between cells in the nervous system, a process that may be important for synaptic function.
Subject(s)
Gene Products, gag , Presynaptic Terminals , Animals , Cytoskeletal Proteins , Nerve Tissue Proteins , Neuronal Plasticity , RNA , RetroviridaeABSTRACT
Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.
Subject(s)
Bird Diseases , Bornaviridae , Mononegavirales Infections , Parrots , Animals , Bornaviridae/genetics , Glycoproteins/genetics , Mononegavirales Infections/pathology , Mononegavirales Infections/virology , Parrots/genetics , Protein Isoforms/genetics , Reverse Genetics , RNA, MessengerABSTRACT
Viruses evolve in infected host populations, and host population dynamics affect viral evolution. RNA viruses with a short duration of infection and a high peak viral load, such as SARS-CoV-2, are maintained in human populations. By contrast, RNA viruses characterized by a long infection duration and a low peak viral load (e.g., borna disease virus) can be maintained in nonhuman populations, and the process of the evolution of persistent viruses has rarely been explored. Here, using a multi-level modeling approach including both individual-level virus infection dynamics and population-scale transmission, we consider virus evolution based on the host environment, specifically, the effect of the contact history of infected hosts. We found that, with a highly dense contact history, viruses with a high virus production rate but low accuracy are likely to be optimal, resulting in a short infectious period with a high peak viral load. In contrast, with a low-density contact history, viral evolution is toward low virus production but high accuracy, resulting in long infection durations with low peak viral load. Our study sheds light on the origin of persistent viruses and why acute viral infections but not persistent virus infection tends to prevail in human society.
Subject(s)
COVID-19 , Virus Diseases , Viruses , Animals , Humans , SARS-CoV-2/genetics , Viruses/geneticsABSTRACT
Borna disease virus 1 (BoDV-1) causes acute fatal encephalitis in mammals, including humans. Despite its importance, research on BoDV-1 cell entry has been hindered by low infectious viral particle production in cells and the lack of cytopathic effects, which are typically useful for screening. To address these issues, we developed a method to efficiently produce vesicular stomatitis virus (VSV) pseudotyped with glycoprotein (G) of members of the genus Orthobornavirus, including BoDV-1. We discovered that optimal G expression is required to obtain a high infectivity titer of the VSV pseudotyped virus. Remarkably, the infectivity of the VSV pseudotyped virus with G from the BoDV-1 strain huP2br was significantly higher than that of the VSV pseudotyped virus with G from the He/80 strain. Mutational analysis demonstrated that the methionine at BoDV-1-G residue 307 increases the infectivity titer of VSV pseudotyped with BoDV-1-G (VSV-BoDV-1-G). A cellĆ¢ĀĀcell fusion assay indicated that this residue plays a pivotal role in membrane fusion, thus suggesting that high membrane fusion activity and a broad pH range for membrane fusion are crucial for achieving a high infectivity titer of VSV-BoDV-1-G. This finding may be extended to increase the infectivity titer of VSV pseudotyped virus with other orthobornavirus G. Our study also contributes to identifying functional domains of BoDV-1-G and provides insight into G-mediated cell entry.
ABSTRACT
RNA virus-based episomal vector (REVec), engineered from Borna disease virus, is an innovative gene delivery tool that enables sustained gene expression in transduced cells. However, the difficulty in controlling gene expression and eliminating vectors has limited the practical use of REVec. In this study, we overcome these shortcomings by inserting artificial aptazymes into the untranslated regions of foreign genes carried in vectors or downstream of the viral phosphoprotein gene, which is essential for vector replication. Non-transmissive REVec carrying GuaM8HDV or the P1-F5 aptazyme showed immediate suppression of gene expression in a guanine or theophylline concentration-dependent manner. Continuous compound administration also markedly reduced the percentage of vector-transduced cells and eventually led to the complete elimination of the vectors from the transduced cells. This new REVec is a safe gene delivery technology that allows fine-tuning of gene expression and could be a useful platform for gene therapy and gene-cell therapy, potentially contributing to the cure of many genetic disorders. KEY POINTS: Ć¢ĀĀ¢ We developed a bornavirus vector capable of silencing transgene expression by insertion of aptazyme Ć¢ĀĀ¢ Transgene expression was markedly suppressed in a compound concentration-dependent manner Ć¢ĀĀ¢ Artificial aptazyme systems allowed complete elimination of the vector from transduced cells.
Subject(s)
Gene Silencing , Genetic Vectors , Plasmids , Genetic Vectors/genetics , Plasmids/genetics , Humans , RNA Viruses/genetics , Transgenes , Transduction, GeneticABSTRACT
Although viruses have threatened our ancestors for millions of years, prehistoric epidemics of viruses are largely unknown. Endogenous bornavirus-like elements (EBLs) are ancient bornavirus sequences derived from the viral messenger RNAs that were reverse transcribed and inserted into animal genomes, most likely by retrotransposons. These elements can be used as molecular fossil records to trace past bornaviral infections. In this study, we systematically identified EBLs in vertebrate genomes and revealed the history of bornavirus infections over nearly 100 My. We confirmed that ancient bornaviral infections have occurred in diverse vertebrate lineages, especially in primate ancestors. Phylogenetic analyses indicated that primate ancestors were infected with various bornaviral lineages during evolution. EBLs in primate genomes formed clades according to their integration ages, suggesting that bornavirus lineages infected with primate ancestors had changed chronologically. However, some bornaviral lineages may have coexisted with primate ancestors and underwent repeated endogenizations for tens of millions of years. Moreover, a bornaviral lineage that coexisted with primate ancestors also endogenized in the genomes of some ancestral bats. The habitats of these bat ancestors have been reported to overlap with the migration route of primate ancestors. These results suggest that long-term virus-host coexistence expanded the geographic distributions of the bornaviral lineage along with primate migration and may have spread their infections to these bat ancestors. Our findings provide insight into the history of bornavirus infections over geological timescales that cannot be deduced from research using extant viruses alone, thus broadening our perspective on virus-host coevolution.
Subject(s)
Biological Evolution , Bornaviridae/genetics , Host Microbial Interactions , Mononegavirales Infections/history , Vertebrates/genetics , Animals , Bornaviridae/classification , Cell Lineage , Genome , History, Ancient , Phylogeny , Primates/genetics , Virus IntegrationABSTRACT
Understanding the genetics and taxonomy of ancient viruses will give us great insights into not only the origin and evolution of viruses but also how viral infections played roles in our evolution. Endogenous viruses are remnants of ancient viral infections and are thought to retain the genetic characteristics of viruses from ancient times. In this study, we used machine learning of endogenous RNA virus sequence signatures to identify viruses in the human genome that have not been detected or are already extinct. Here, we show that the k-mer occurrence of ancient RNA viral sequences remains similar to that of extant RNA viral sequences and can be differentiated from that of other human genome sequences. Furthermore, using this characteristic, we screened RNA viral insertions in the human reference genome and found virus-like insertions with phylogenetic and evolutionary features indicative of an exogenous origin but lacking homology to previously identified sequences. Our analysis indicates that animal genomes still contain unknown virus-derived sequences and provides a glimpse into the diversity of the ancient virosphere.
Subject(s)
Genome, Human , Mutagenesis, Insertional/genetics , Retroviridae/genetics , Animals , Base Sequence , Humans , Machine Learning , Mammals/virology , Nucleoproteins/metabolismABSTRACT
Zoonotic diseases considerably impact public health and socioeconomics. RNA viruses reportedly caused approximately 94% of zoonotic diseases documented from 1990 to 2010, emphasizing the importance of investigating RNA viruses in animals. Furthermore, it has been estimated that hundreds of thousands of animal viruses capable of infecting humans are yet to be discovered, warning against the inadequacy of our understanding of viral diversity. High-throughput sequencing (HTS) has enabled the identification of viral infections with relatively little bias. Viral searches using both symptomatic and asymptomatic animal samples by HTS have revealed hidden viral infections. This review introduces the history of viral searches using HTS, current analytical limitations, and future potentials. We primarily summarize recent research on large-scale investigations on viral infections reusing HTS data from public databases. Furthermore, considering the accumulation of uncultivated viruses, we discuss current studies and challenges for connecting viral sequences to their phenotypes using various approaches: performing data analysis, developing predictive modeling, or implementing high-throughput platforms of virological experiments. We believe that this article provides a future direction in large-scale investigations of potential zoonotic viruses using the HTS technology.
Subject(s)
Virus Diseases , Viruses , Animals , Humans , Viruses/genetics , Virus Diseases/veterinary , Zoonoses , High-Throughput Nucleotide SequencingABSTRACT
Borna disease virus 1 (BoDV-1) is a non-segmented, negative-strand RNA virus that is characterized by persistent infection in the nucleus and low production of progeny virions. This feature impedes not only the harvesting of infectious viral particles from infected cells but also the rescue of high titres of recombinant BoDV-1 (rBoDV-1) by reverse genetics. Here, we demonstrate that exogenous expression of both matrix protein (M) and glycoprotein (G), which are constituents of the viral lipid envelope, significantly facilitates the formation of infectious particles and propagation of BoDV-1 without affecting its viral RNA synthesis. Furthermore, simultaneous transfection of M and G expression plasmids with N, P and L helper plasmids by reverse genetics drastically enhances the rescue efficiency of rBoDV-1. On the other hand, we also show that overexpression of M induces obvious cytotoxicity similar to that of other Mononegaviruses. Together with our recent report showing that excess expression of G induces aberrant accumulation of immature G, a potential stimulator of the host innate immune response, it is conceivable that BoDV-1 may suppress excess expression of M and G to reduce the cytopathic effect, thereby leading to maintenance of persistent infection. Our results contribute not only to the establishment of an efficient method to recover high-titre BoDV-1 but also to understanding the unique mechanism of persistent BoDV-1 infection.
Subject(s)
Borna disease virus , Animals , Borna disease virus/genetics , Cell Nucleus , Glycoproteins/genetics , RNA, Viral/genetics , VirionABSTRACT
An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate an REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus. We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, conversely, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also to understanding of the molecular regulation of orthobornavirus polymerase activity. IMPORTANCE Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus, is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus, can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.
Subject(s)
Borna disease virus/enzymology , Borna disease virus/metabolism , Genetic Vectors/metabolism , Nucleoproteins/metabolism , RNA-Dependent RNA Polymerase/metabolism , Viruses, Unclassified/metabolism , Amino Acid Sequence , Animals , Borna Disease/virology , Cell Nucleus/virology , Chlorocebus aethiops , HEK293 Cells , Humans , Plasmids/metabolism , RNA, Viral/metabolism , Reverse Genetics/methods , Vero Cells , Viral Proteins/metabolism , Virus ReplicationABSTRACT
An RNA virus-based episomal vector (REVec) whose backbone is Borna disease virus 1 (BoDV-1) can provide long-term gene expression in transduced cells. To improve the transduction efficiency of REVec, we evaluated the role of the viral envelope glycoprotein (G) of the genus Orthobornavirus, including that of BoDV-1, in the production of infectious particles. By using G-pseudotype assay in which the lack of G in G-deficient REVec (ΔG-REVec) was compensated for expression of G, we found that excess expression of BoDV-1-G does not affect particle production itself but results in uncleaved and aberrant mature G expression in the cells, leading to the production of REVec particles with low transduction titers. We revealed that the expression of uncleaved G in the cells inhibits the incorporation of mature G and vgRNA into the particles. This feature of G was conserved among mammalian and avian orthobornaviruses; however, the cleavage efficacy of canary bornavirus 1 (CnBV-1)-G was exceptionally not impaired by its excess expression, which led to the production of the pseudotype ΔG-REVec with the highest titer. Chimeric G proteins between CnBV-1 and -2 revealed that the signal peptide of CnBV-1-G was responsible for the cleavage efficacy through the interaction with intracellular furin. We showed that CnBV-1 G leads to the development of pseudotyped REVec with high transduction efficiency and a high-titer recombinant REVec. Our study demonstrated that the restricted expression of orthobornavirus G contributes to the regulation of infectious particle production, the mechanism of which can improve the transduction efficiency of REVec.IMPORTANCE Most viruses causing persistent infection produce few infectious particles from the infected cells. Borna disease virus 1, a member of the genus Orthobornavirus, is an RNA virus that persistently infects the nucleus and has been applied to vectors for long-term gene expression. In this study, we showed that, common among orthobornaviruses, excessive G expression does not affect particle production itself but reduces the production of infectious particles with mature G and genomic RNA. This result suggested that limited G expression contributes to suppressing abnormal viral particle production. On the other hand, we found that canary bornavirus 1 has an exceptional G maturation mechanism and produces a high-titer virus. Our study will contribute to not only understanding the mechanism of infectious particle production but also improving the vector system of orthobornaviruses.
ABSTRACT
Endogenous retroviruses (ERVs) are sequences in animal genomes that originated from ancient retrovirus infections; they provide genetic novelty in hosts by being coopted as functional genes or elements during evolution. Recently, we demonstrated that endogenous elements from not only from retroviruses but also nonretroviral RNA viruses are a possible source of functional genes in host animals. The remnants of ancient bornavirus infections, called endogenous bornavirus-like elements (EBLs), are present in the genomes of a wide variety of vertebrate species, and some express functional products in host cells. Previous studies have predicted that the human EBL locus derived from bornavirus nucleoprotein, termed hsEBLN-2, expresses mRNA encoding a protein, suggesting that hsEBLN-2 has acquired a cellular function during evolution. However, the detailed function of the hsEBLN-2-derived product remains to be elucidated. In this study, we show that the hsEBLN-2-derived protein E2 acts as a mitochondrial protein that interacts with mitochondrial host factors associated with apoptosis, such as HAX-1. We also demonstrate that knockdown of hsEBLN-2-derived RNA increased the levels of PARP and caspase-3 cleavage and markedly decreased cell viability. In contrast, overexpression of E2 enhanced cell viability, as well as the intracellular stability of HAX-1, under stress conditions. Our results suggest that hsEBLN-2 has been coopted as a host gene, the product of which is involved in cell viability by interacting with mitochondrial proteins. IMPORTANCE Our genomes contain molecular fossils of ancient viruses, called endogenous virus elements (EVEs). Mounting evidence suggests that EVEs derived from nonretroviral RNA viruses have acquired functions in host cells during evolution. Previous studies have revealed that a locus encoding a bornavirus-derived EVE, hsEBLN-2, which was generated approximately 43 million years ago in a human ancestor, may be linked to the development of some tumors. However, the function of hsEBLN-2 has not been determined. In this study, we found that the E2 protein, an expression product of hsEBLN-2, interacts with apoptosis-related host proteins as a mitochondrial protein and affects cell viability. This study suggests that nonretroviral RNA viral EVEs have been coopted by hosts with more diverse functions than previously thought, showing a pivotal role for RNA virus infection in evolution.
Subject(s)
Bornaviridae/genetics , Cell Survival/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Genome, Human , HEK293 Cells , HeLa Cells , Humans , Mitochondria/metabolism , Mitochondrial Proteins/physiology , Nucleoproteins/genetics , RNA, Viral , RNA-Seq , TranscriptomeABSTRACT
Bats (Order: Chiroptera), including those of the genus Eptesicus, have been reported to serve as reservoirs of several zoonotic viruses. Notably, bats have been reported to lack obvious symptoms of infection with such viruses and are thought to have unique immune system responses. However, the responses of their innate immune system, the first line of immunity, remain largely unclear. Here, we comprehensively analyzed the expression profiles in two Eptesicus bat cell lines to investigate their innate immune responses. The gene expression profiles after polyinosinic:polycytidylic acid [poly (I:C)] induction were similar between the two bat cell lines, but uniquely upregulated differentially expressed genes were also identified. We also revealed that the upregulated genes of Eptesicus bat cells were distinct from those of human epithelial cells in response to induction. Moreover, the basal expression levels of several immune-related genes were higher in bat cells than in human cells. We also identified unannotated novel transcripts that were upregulated after induction and novel microRNAs expressed in bat cells, some of which were upregulated by poly (I:C) treatment. This is the first report to illustrate the innate immune response in Eptesicus bat cells; therefore, this study provides basic and novel insights into bat innate immunity. Our data represent a valuable resource for future studies into bat immunity and the biology of Eptesicus bats.
Subject(s)
Chiroptera , Viruses , Animals , Cell Line , Chiroptera/genetics , Humans , Immune System , Immunity, InnateABSTRACT
Borna disease virus (BoDV), a nonsegmented, negative-sense RNA virus, establishes persistent infection and replicates in the cell nucleus. Since BoDV genomic RNA exists as episomal RNA, the host genome is not invaded by BoDV infection. These unique features make BoDV a promising gene delivery system as an RNA virus-based episomal vector (REVec). Previously, the stable expression of genes of interest in vitro and in vivo using a REVec was reported. For the clinical application of a REVec, the fundamental properties under various physical and chemical conditions must be determined to develop purification processes, supply chains, and biosafety management. This study investigated the effects of the following conditions on the inducibility of transmission-defective ΔG-REVec: freeze-thaw cycles, dehydration, UV, temperature, pH, and reagents for virucides and laboratory experiments. Although the titer of ΔG-REVec was not influenced by the freeze-thaw process or 5 minute incubation at ≤50Ā°C, ΔG-REVec was significantly inactivated by incubation at ≥70Ā°C for 5 minutes. The induction titer of ΔG-REVec was decreased by long-term incubation, dehydration, and UV irradiation in a temperature- and time-dependent manner. ΔG-REVec was sensitive to lower pH and inactivated by chemical reagents under general conditions. These results provide important knowledge for developing the clinical use of REVec and biosafety management.
Subject(s)
Borna disease virus , Animals , Borna disease virus/genetics , Persistent Infection , Plasmids/genetics , Stimulation, Chemical , Virus ReplicationABSTRACT
Cells sense pathogen-derived double-stranded RNA (dsRNA) as nonself. To avoid autoimmune activation by self dsRNA, cells utilize A-to-I editing by adenosine deaminase acting on RNA 1 (ADAR1) to disrupt dsRNA structures. Considering that viruses have evolved to exploit host machinery, A-to-I editing could benefit innate immune evasion by viruses. Borna disease virus (BoDV), a nuclear-replicating RNA virus, may require escape from nonself RNA-sensing and immune responses to establish persistent infection in the nucleus; however, the strategy by which BoDV evades nonself recognition is unclear. Here, we evaluated the involvement of ADARs in BoDV infection. The infection efficiency of BoDV was markedly decreased in both ADAR1 and ADAR2 knockdown cells at the early phase of infection. Microarray analysis using ADAR2 knockdown cells revealed that ADAR2 reduces immune responses even in the absence of infection. Knockdown of ADAR2 but not ADAR1 significantly reduced the spread and titer of BoDV in infected cells. Furthermore, ADAR2 knockout decreased the infection efficiency of BoDV, and overexpression of ADAR2 rescued the reduced infectivity in ADAR2 knockdown cells. However, the growth of influenza A virus, which causes acute infection in the nucleus, was not affected by ADAR2 knockdown. Moreover, ADAR2 bound to BoDV genomic RNA and induced A-to-G mutations in the genomes of persistently infected cells. We finally demonstrated that BoDV produced in ADAR2 knockdown cells induces stronger innate immune responses than those produced in wild-type cells. Taken together, our results suggest that BoDV utilizes ADAR2 to edit its genome to appear as "self" RNA in order to maintain persistent infection in the nucleus.IMPORTANCE Cells use the editing activity of adenosine deaminase acting on RNA proteins (ADARs) to prevent autoimmune responses induced by self dsRNA, but viruses can exploit this process to their advantage. Borna disease virus (BoDV), a nuclear-replicating RNA virus, must escape nonself RNA sensing by the host to establish persistent infection in the nucleus. We evaluated whether BoDV utilizes ADARs to prevent innate immune induction. ADAR2 plays a key role throughout the BoDV life cycle. ADAR2 knockdown reduced A-to-I editing of BoDV genomic RNA, leading to the induction of a strong innate immune response. These data suggest that BoDV exploits ADAR2 to edit nonself genomic RNA to appear as self RNA for innate immune evasion and establishment of persistent infection.
Subject(s)
Adenosine Deaminase/metabolism , Borna disease virus/physiology , Cell Nucleus/metabolism , Genome, Viral , RNA Editing , RNA, Viral/biosynthesis , RNA-Binding Proteins/metabolism , Adenosine Deaminase/genetics , Animals , Borna Disease/genetics , Borna Disease/metabolism , Cell Nucleus/genetics , Cell Nucleus/virology , Dogs , Humans , Madin Darby Canine Kidney Cells , RNA, Viral/genetics , RNA-Binding Proteins/geneticsABSTRACT
Endogenous retroviruses have demonstrated exaptation during long-term evolution with hosts, e.g., resulting in acquisition of antiviral effect on related extant viral infections. While empirical studies have found that an endogenous bornavirus-like element derived from viral nucleoprotein (itEBLN) in the ground squirrel genome shows antiviral effect on virus replication and de novo infection, the antiviral mechanism, dynamics, and quantitative effect of itEBLN remain unknown. In this study, we experimentally and theoretically investigated the dynamics of how an extant bornavirus, Borna disease virus 1 (BoDV-1), spreads and replicates in uninfected, BoDV-1-infected, and itEBLN-expressing cultured cells. Quantifying antiviral effect based on time course data sets, we found that the antiviral effects of itEBLN are estimated to be 75% and 34% on intercellular virus spread and intracellular virus replication, respectively. This discrepancy between intercellular virus spread and intracellular viral replication suggests that viral processes other than the replication of viral ribonucleoprotein complex (RNP) contributed to the suppression of virus spread in itEBLN-expressing cells. Because itEBLN binds to the BoDV-1 RNP, the suppression of viral RNP trafficking can be an attractive candidate explaining this discrepancy.IMPORTANCE Accumulating evidence suggests that some endogenous viral elements (EVEs), including endogenous retroviruses and endogenous nonretroviral virus elements, have acquired functions in the host as a result of long-term coevolution. Recently, an endogenous bornavirus-like element (itEBLN) found in the ground squirrel genome has been shown to have antiviral activity against exogenous bornavirus infection. In this study, we first quantified bornavirus spread in cultured cells and then calculated the antiviral activity of itEBLN on bornavirus infection. The calculated antiviral activity of itEBLN suggests its suppression of multiple processes in the viral life cycle. To our knowledge, this is the first study quantifying the antiviral activity of EVEs and speculating on a model of how some EVEs have acquired antiviral activity during host-virus arms races.
Subject(s)
Borna disease virus/genetics , Genome , Host-Pathogen Interactions/genetics , Models, Genetic , Nucleocapsid Proteins/genetics , Oligodendroglia/virology , Adaptation, Biological , Animals , Biological Coevolution , Borna Disease/genetics , Borna Disease/virology , Borna disease virus/metabolism , Cell Line , Humans , Nucleocapsid Proteins/metabolism , Oligodendroglia/metabolism , Sciuridae/genetics , Sciuridae/virology , Virus ReplicationABSTRACT
Persistent intranuclear infection is an uncommon infection strategy among RNA viruses. However, Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, maintains viral infection in the cell nucleus by forming structured aggregates of viral ribonucleoproteins (vRNPs), and by tethering these vRNPs onto the host chromosomes. To better understand the nuclear infection strategy of BoDV-1, we determined the host protein interactors of the BoDV-1 large (L) protein. By proximity-dependent biotinylation, we identified several nuclear host proteins interacting with BoDV-1 L, one of which is TRMT112, a partner of several methyltransferases (MTases). TRMT112 binds with BoDV-1 L at the RNA-dependent RNA polymerase domain, together with BUD23, an 18S ribosomal RNA MTase and 40S ribosomal maturation factor. We then discovered that BUD23-TRMT112 mediates the chromosomal tethering of BoDV-1 vRNPs, and that the MTase activity is necessary in the tethering process. These findings provide us a better understanding on how nuclear host proteins assist the chromosomal tethering of BoDV-1, as well as new prospects of host-viral interactions for intranuclear infection strategy of orthobornaviruses.
Subject(s)
Borna disease virus , Methyltransferases/metabolism , Ribonucleoproteins/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Borna disease virus/genetics , Borna disease virus/physiology , Cell Nucleus , ChromosomesABSTRACT
Lyssaviruses (genus Lyssavirus) are negative-strand RNA viruses belonging to the family Rhabdoviridae. Although a lyssa-like virus (frog lyssa-like virus 1 [FLLV-1]), which is distantly related to lyssaviruses, was recently identified in frogs, a large phylogenetic gap exists between those viruses, and thus the evolution of lyssaviruses is unclear. In this study, we detected a lyssa-like virus from publicly available RNA-seq data obtained using the brain and skin of Anolis allogus (Spanish flag anole), which was designated anole lyssa-like virus 1 (ALLV-1), and determined its complete coding sequence. Via mapping analysis, we demonstrated that ALLV-1 was actively replicating in the original brain and skin samples. Phylogenetic analyses revealed that ALLV-1 is more closely related to lyssaviruses than FLLV-1. Overall, the topology of the tree is compatible with that of hosts, suggesting the long-term co-divergence of lyssa-like and lyssaviruses and vertebrates. The ψ region, which is a long 3' untranslated region of unknown origin present in the G mRNA of lyssaviruses (approximately 400-700 nucleotides), is also present in the genome of ALLV-1, but it is much shorter (approximately 180 nucleotides) than those of lyssaviruses. Interestingly, FLLV-1 lacks the ψ region, suggesting that the ψ region was acquired after the divergence of the FLLV-1 and ALLV-1/lyssavirus lineages. To the best of our knowledge, this is the first report to identify a lyssa-like virus in reptiles, and thus, our findings provide novel insights into the evolution of lyssaviruses.
Subject(s)
Lizards/virology , Lyssavirus , Rhabdoviridae Infections , 3' Untranslated Regions , Animals , Lyssavirus/classification , Lyssavirus/genetics , Lyssavirus/isolation & purification , Phylogeny , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virologyABSTRACT
Targeting of viral proteins to specific subcellular compartments is a fundamental step for viruses to achieve successful replication in infected cells. Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, uniquely replicates and persists in the cell nucleus. Here, it is demonstrated that BoDV nucleoprotein (N) transcripts undergo mRNA splicing to generate truncated isoforms. In combination with alternative usage of translation initiation sites, the N gene potentially expresses at least six different isoforms, which exhibit diverse intracellular localizations, including the nucleoplasm, cytoplasm, and endoplasmic reticulum (ER), as well as intranuclear viral replication sites. Interestingly, the ER-targeting signal peptide in N is exposed by removing the intron by mRNA splicing. Furthermore, the spliced isoforms inhibit viral polymerase activity. Consistently, recombinant BoDVs lacking the N-splicing signals acquire the ability to replicate faster than wild-type virus in cultured cells, suggesting that N isoforms created by mRNA splicing negatively regulate BoDV replication. These results provided not only the mechanism of how mRNA splicing generates viral proteins that have distinct functions but also a novel strategy for replication control of RNA viruses using isoforms with different subcellular localizations.IMPORTANCE Borna disease virus (BoDV) is a highly neurotropic RNA virus that belongs to the orthobornavirus genus. A zoonotic orthobornavirus that is genetically related to BoDV has recently been identified in squirrels, thus increasing the importance of understanding the replication and pathogenesis of orthobornaviruses. BoDV replicates in the nucleus and uses alternative mRNA splicing to express viral proteins. However, it is unknown whether the virus uses splicing to create protein isoforms with different functions. The present study demonstrated that the nucleoprotein transcript undergoes splicing and produces four new isoforms in coordination with alternative usage of translation initiation codons. The spliced isoforms showed a distinct intracellular localization, including in the endoplasmic reticulum, and recombinant viruses lacking the splicing signals replicated more efficiently than the wild type. The results provided not only a new regulation of BoDV replication but also insights into how RNA viruses produce protein isoforms from small genomes.
Subject(s)
Alternative Splicing/genetics , Borna disease virus/genetics , Nucleoproteins/genetics , Viral Proteins/genetics , Virus Replication/genetics , Animals , Base Sequence , Borna Disease/virology , Cell Line , Cell Nucleus/virology , Chlorocebus aethiops , HEK293 Cells , Humans , Molecular Dynamics Simulation , Protein Isoforms/genetics , RNA, Viral/genetics , Sequence Analysis, RNA , Vero CellsABSTRACT
In recent years, viral vector based in vivo gene delivery strategies have achieved a significant success in the treatment of genetic diseases. RNA virus-based episomal vector lacking viral glycoprotein gene (ΔG-REVec) is a nontransmissive gene delivery system that enables long-term gene expression in a variety of cell types in vitro, yet in vivo gene delivery has not been successful due to the difficulty in producing high titer vector. The present study showed that tangential flow filtration (TFF) can be effectively employed to increase the titer of ΔG-REVec. Concentration and diafiltration of ΔG-REVec using TFF significantly increased its titer without loss of infectious activity. Importantly, intracranial administration of high titer vector enabled persistent transgene expression in rodent brain.