Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Publication year range
1.
Chemistry ; 30(23): e202303921, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38354298

ABSTRACT

Aggregated α-synuclein (α-syn) protein is a pathological hallmark of Parkinson's disease (PD) and Lewy body dementia (LBD). Development of positron emission tomography (PET) radiotracers to image α-syn aggregates has been a longstanding goal. This work explores the suitability of a pyridothiophene scaffold for α-syn PET radiotracers, where 47 derivatives of a potent pyridothiophene (asyn-44; Kd=1.85 nM) were synthesized and screened against [3H]asyn-44 in competitive binding assays using post-mortem PD brain homogenates. Equilibrium inhibition constant (Ki) values of the most potent compounds were determined, of which three had Ki's in the lower nanomolar range (12-15 nM). An autoradiography study confirmed that [3H]asyn-44 is promising for imaging brain sections from multiple system atrophy and PD donors. Fluorine-18 labelled asyn-44 was synthesized in 6±2 % radiochemical yield (decay-corrected, n=5) with a molar activity of 263±121 GBq/µmol. Preliminary PET imaging of [18F]asyn-44 in rats showed high initial brain uptake (>1.5 standardized uptake value (SUV)), moderate washout (~0.4 SUV at 60 min), and low variability. Radiometabolite analysis showed 60-80 % parent tracer in the brain after 30 and 60 mins. While [18F]asyn-44 displayed good in vitro properties and acceptable brain uptake, troublesome radiometabolites precluded further PET imaging studies. The synthesis and in vitro evaluation of additional pyridothiophene derivatives are underway, with the goal of attaining improved affinity and metabolic stability.

2.
Mol Imaging ; 2023: 8826977, 2023.
Article in English | MEDLINE | ID: mdl-37719326

ABSTRACT

[18F]SynVesT-1 is a PET radiopharmaceutical that binds to the synaptic vesicle protein 2A (SV2A) and serves as a biomarker of synaptic density with widespread clinical research applications in psychiatry and neurodegeneration. The initial goal of this study was to concurrently conduct PET imaging studies with [18F]SynVesT-1 at our laboratories. However, the data in the first two human PET studies had anomalous biodistribution despite the injected product meeting all specifications during the prerelease quality control protocols. Further investigation, including imaging in rats as well as proton and carbon 2D-NMR spectroscopic studies, led to the discovery that a derivative of the precursor had been received from the manufacturer. Hence, we report our investigation and the first-in-human study of [18F]SDM-4MP3, a structural variant of [18F]SynVesT-1, which does not have the requisite characteristics as a PET radiopharmaceutical for imaging SV2A in the central nervous system.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals , Humans , Animals , Rats , Tissue Distribution
3.
Article in English | MEDLINE | ID: mdl-37691152

ABSTRACT

Evobrutinib is a second-generation, highly selective, irreversible Bruton's tyrosine kinase (BTK) inhibitor that has shown efficacy in the autoimmune diseases arthritis and multiple sclerosis. Its development as a positron emission tomography (PET) radiotracer has potential for in vivo imaging of BTK in various disease models including several cancers, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), and lipopolysaccharide (LPS)-induced lung damage. Herein, we report the automated radiosynthesis of [11 C]evobrutinib using a base-aided palladium-NiXantphos-mediated 11 C-carbonylation reaction. [11 C]Evobrutinib was reliably formulated in radiochemical yields of 5.5 ± 1.5% and a molar activity of 34.5 ± 17.3 GBq/µmol (n = 12) with 99% radiochemical purity. Ex vivo autoradiography studies showed high specific binding of [11 C]evobrutinib in HT-29 colorectal cancer mouse xenograft tissues (51.1 ± 7.1%). However, in vivo PET/computed tomography (CT) imaging with [11 C]evobrutinib showed minimal visualization of HT-29 colorectal cancer xenografts and only a slight increase in radioactivity accumulation in the associated time-activity curves. In preliminary PET/CT studies, [11 C]evobrutinib failed to visualize either SARS-CoV-2 pseudovirus infection or LPS-induced injury in mouse models. In conclusion, [11 C]evobrutinib was successfully synthesized by 11 C-carbonylation and based on our preliminary studies does not appear to be a promising BTK-targeted PET radiotracer in the rodent disease models studied herein.

4.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500626

ABSTRACT

Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60-120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral-contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.


Subject(s)
Fructose , Rodentia , Animals , Female , Male , Rats , Fructose/metabolism , Rodentia/metabolism , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Brain/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism
5.
J Psychiatry Neurosci ; 46(2): E238-E246, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33729738

ABSTRACT

Background: Upregulation of the endocannabinoid enzyme fatty acid amide hydrolase (FAAH) has been linked to abnormal activity in frontoamygdalar circuits, a hallmark of posttraumatic stress disorder. We tested the hypothesis that FAAH levels in the amygdala were negatively correlated with functional connectivity between the amygdala and prefrontal cortex, subserving stress and affect control. Methods: Thirty-one healthy participants completed positron emission tomography (PET) imaging with the FAAH probe [C-11]CURB, and resting-state functional MRI scans. Participants were genotyped for the FAAH polymorphism rs324420, and trait neuroticism was assessed. We calculated amygdala functional connectivity using predetermined regions of interest (including the subgenual ventromedial prefrontal cortex [sgvmPFC] and the dorsal anterior cingulate cortex [dACC]) and a seed-to-voxel approach. We conducted correlation analyses on functional connectivity, with amygdala [C-11]CURB binding as a variable of interest. Results: The strength of amygdala functional connectivity with the sgvmPFC and dACC was negatively correlated with [C-11]CURB binding in the amygdala (sgvmPFC: r = -0.38, q = 0.04; dACC: r = -0.44; q = 0.03). Findings were partly replicated using the seed-to-voxel approach, which showed a cluster in the ventromedial prefrontal cortex, including voxels in the dACC but not the sgvmPFC (cluster-level, family-wise error rate corrected p < 0.05). Limitations: We did not replicate earlier findings of a relationship between an FAAH polymorphism (rs324420) and amygdala functional connectivity. Conclusion: Our data provide preliminary evidence that lower levels of FAAH in the amygdala relate to increased frontoamygdalar functional coupling. Our findings were consistent with the role of FAAH in regulating brain circuits that underlie fear and emotion processing in humans.


Subject(s)
Amidohydrolases/metabolism , Amygdala/physiology , Magnetic Resonance Imaging , Positron-Emission Tomography , Adult , Amygdala/diagnostic imaging , Female , Healthy Volunteers , Humans , Male , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism
6.
Hum Psychopharmacol ; 36(5): e2791, 2021 09.
Article in English | MEDLINE | ID: mdl-33899252

ABSTRACT

OBJECTIVE: To establish in an exploratory neuroimaging study whether γ-hydroxybutyrate (sodium oxybate [SO]), a sedative, anti-narcoleptic drug with abuse potential, transiently inhibits striatal dopamine release in the human. METHODS: Ten healthy participants (30 years; 6M, 4F) and one participant with narcolepsy received a baseline positron emission tomography scan of [C-11]raclopride, a D2/3 dopamine receptor radioligand sensitive to dopamine occupancy, followed approximately one week later by an oral sedative 3g dose of SO and two [C-11]raclopride scans (1 h, 7 h post SO). Plasma SO levels and drowsiness duration were assessed. RESULTS: No significant changes were detected in [C-11]raclopride binding in striatum overall 1 or 7 h after SO, but a small non-significant increase in [C-11]raclopride binding, implying decreased dopamine occupancy, was noted in limbic striatal subdivision at one hour (+6.5%; p uncorrected = 0.045; +13.2%, narcolepsy participant), returning to baseline at 7 h. A positive correlation was observed between drowsiness duration and percent change in [C-11]raclopride binding in limbic striatum (r = 0.73; p = 0.017). CONCLUSIONS: We did not find evidence in this sample of human subjects of a robust striatal dopamine change, as was reported in non-human primates. Our preliminary data, requiring extension, suggest that a 3g sedative SO dose might cause slight transient inhibition of dopamine release in limbic striatum.


Subject(s)
Dopamine , Sodium Oxybate , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Humans , Neuroimaging , Sodium Oxybate/pharmacology
7.
Addict Biol ; 26(1): e12876, 2021 01.
Article in English | MEDLINE | ID: mdl-32017280

ABSTRACT

Activation of brain microglial cells, microgliosis, has been linked to methamphetamine (MA)-seeking behavior, suggesting that microglia could be a new therapeutic target for MA use disorder. Animal data show marked brain microglial activation following acute high-dose MA, but microglial status in human MA users is uncertain, with one positron emission tomography (PET) investigation reporting massively and globally increased translocator protein 18 kDa (TSPO; [C-11](R)-PK11195) binding, a biomarker for microgliosis, in MA users. Our aim was to measure binding of a second-generation TSPO radioligand, [F-18]FEPPA, in brain of human chronic MA users. Regional total volume of distribution (VT ) of [F-18]FEPPA was estimated with a two-tissue compartment model with arterial plasma input function for 10 regions of interest in 11 actively using MA users and 26 controls. A RM-ANOVA corrected for TSPO rs6971 polymorphism was employed to test significance. There was no main effect of group on [F-18]FEPPA VT (P = .81). No significant correlations between [F-18]FEPPA VT and MA use duration, weekly dosage, blood MA concentrations, regional brain volumes, and self-reported craving were observed. Our preliminary findings, consistent with our earlier postmortem data, do not suggest substantial brain microgliosis in MA use disorder but do not rule out microglia as a therapeutic target in MA addiction. Absence of increased [F-18]FEPPA TSPO binding might be related to insufficient MA dose or blunting of microglial response following repeated MA exposure, as suggested by some animal data.


Subject(s)
Amphetamine-Related Disorders/diagnostic imaging , Anilides/metabolism , Microglia/physiology , Positron-Emission Tomography , Pyridines/metabolism , Receptors, GABA/metabolism , Adult , Amphetamine-Related Disorders/metabolism , Brain/metabolism , Case-Control Studies , Female , Fluorine Radioisotopes/metabolism , Humans , Magnetic Resonance Imaging , Male , Methamphetamine/metabolism , Middle Aged , Radiopharmaceuticals/metabolism
8.
Brain ; 140(9): 2460-2474, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29050386

ABSTRACT

See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article. The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson's disease. Inhibitors of MAOB are used clinically in Parkinson's disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson's disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson's disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson's disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is 'substantially' localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson's disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the enzyme in the parkinsonian substantia nigra; instead, increased nigral levels of a MAOA fragment and 'turnover' of the enzyme were observed in the conditions. Our findings provide support that MAOB might serve as a biochemical imaging marker, albeit not entirely specific, for astrocyte activation in human brain. The observation that MAOB protein concentration is generally increased in degenerating brain areas in multiple system atrophy (especially putamen) and in progressive supranuclear palsy, but not in the nigra in Parkinson's disease, also distinguishes astrocyte behaviour in Parkinson's disease from that in the two 'Parkinson-plus' conditions. The question remains whether suppression of either MAOB in astrocytes or MAOA in dopamine neurons might influence progression of the parkinsonian disorders.


Subject(s)
Brain/enzymology , Dopamine/deficiency , Monoamine Oxidase/metabolism , Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Supranuclear Palsy, Progressive/metabolism , Adolescent , Adult , Case-Control Studies , Caudate Nucleus/metabolism , Female , Frontal Lobe/metabolism , Glial Fibrillary Acidic Protein/metabolism , Humans , Isoenzymes/metabolism , Male , Middle Aged , Multiple System Atrophy/pathology , Nerve Degeneration/pathology , Parkinson Disease/pathology , Peptide Fragments/metabolism , Phosphopyruvate Hydratase/metabolism , Putamen/metabolism , Substantia Nigra/metabolism , Supranuclear Palsy, Progressive/pathology , Tubulin/metabolism , Young Adult , alpha-Synuclein/metabolism
9.
Eur J Neurosci ; 45(1): 58-66, 2017 01.
Article in English | MEDLINE | ID: mdl-27519465

ABSTRACT

The objective of this review is to evaluate the evidence that recreational methamphetamine exposure might damage dopamine neurones in human brain, as predicted by experimental animal findings. Brain dopamine marker data in methamphetamine users can now be compared with those in Parkinson's disease, for which the Oleh Hornykiewicz discovery in Vienna of a brain dopamine deficiency is established. Whereas all examined striatal (caudate and putamen) dopamine neuronal markers are decreased in Parkinson's disease, levels of only some (dopamine, dopamine transporter) but not others (dopamine metabolites, synthetic enzymes, vesicular monoamine transporter 2) are below normal in methamphetamine users. This suggests that loss of dopamine neurones might not be characteristic of methamphetamine exposure in at least some human drug users. In methamphetamine users, dopamine loss was more marked in caudate than in putamen, whereas in Parkinson's disease, the putamen is distinctly more affected. Substantia nigra loss of dopamine-containing cell bodies is characteristic of Parkinson's disease, but similar neuropathological studies have yet to be conducted in methamphetamine users. Similarly, it is uncertain whether brain gliosis, a common feature of brain damage, occurs after methamphetamine exposure in humans. Preliminary epidemiological findings suggest that methamphetamine use might increase risk of subsequent development of Parkinson's disease. We conclude that the available literature is insufficient to indicate that recreational methamphetamine exposure likely causes loss of dopamine neurones in humans but does suggest presence of a striatal dopamine deficiency that, in principle, could be corrected by dopamine substitution medication if safety and subject selection considerations can be resolved.


Subject(s)
Central Nervous System Stimulants/therapeutic use , Dopamine Agents/therapeutic use , Dopamine Plasma Membrane Transport Proteins/drug effects , Methamphetamine/therapeutic use , Parkinson Disease/drug therapy , Animals , Central Nervous System Stimulants/adverse effects , Dopamine/metabolism , Dopamine Agents/administration & dosage , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Methamphetamine/administration & dosage , Methamphetamine/adverse effects
10.
Eur J Neurosci ; 45(1): 192-197, 2017 01.
Article in English | MEDLINE | ID: mdl-27741357

ABSTRACT

In the human brain, the claustrum is a small subcortical telencephalic nucleus, situated between the insular cortex and the putamen. A plethora of neuroanatomical studies have shown the existence of dense, widespread, bidirectional and bilateral monosynaptic interconnections between the claustrum and most cortical areas. A rapidly growing body of experimental evidence points to the integrative role of claustrum in complex brain functions, from motor to cognitive. Here, we examined for the first time, the behaviour of the classical monoamine neurotransmitters dopamine, noradrenaline and serotonin in the claustrum of the normal autopsied human brain and of patients who died with idiopathic Parkinson's disease (PD). We found in the normal claustrum substantial amounts of all three monoamine neurotransmitters, substantiating the existence of the respective brain stem afferents to the claustrum. In PD, the levels of dopamine and noradrenaline were greatly reduced by 93 and 81%, respectively. Serotonin levels remained unchanged. We propose that by virtue of their projections to the claustrum, the brain stem dopamine, noradrenaline and serotonin systems interact directly with the cortico-claustro-cortical information processing mechanisms, by-passing their (parallel) routes via the basal ganglia-thalamo-cortical circuits. We suggest that loss of dopamine and noradrenaline in the PD claustrum is critical in the aetiology of both the motor and the non-motor symptoms of PD.


Subject(s)
Basal Ganglia/metabolism , Dopamine/metabolism , Norepinephrine/metabolism , Parkinson Disease/metabolism , Adult , Aged , Aged, 80 and over , Cerebral Cortex/metabolism , Female , Humans , Male , Middle Aged , Parkinson Disease/physiopathology , Serotonin/metabolism
11.
Neurobiol Dis ; 82: 243-253, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26102022

ABSTRACT

Although gliosis is a normal response to brain injury, reports on the extent of astrogliosis in the degenerating substantia nigra in Parkinson's disease (PD) are conflicting. It has also been recently suggested that accumulation of nigral α-synuclein in this disorder might suppress astrocyte activation which in turn could exacerbate the degenerative process. This study examined brain protein levels (intact protein, fragments, and aggregates, if any) of astroglial markers and their relationship to α-synuclein in PD and in the positive control parkinson-plus conditions multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Autopsied brain homogenates of patients with PD (n=10), MSA (n=11), PSP (n=11) and matched controls (n=10) were examined for the astroglial markers glial fibrillary acidic protein (GFAP), vimentin, and heat shock protein-27 (Hsp27) by quantitative immunoblotting. As expected, both MSA (putamen>substantia nigra>caudate>frontal cortex) and PSP (substantia nigra>caudate>putamen, frontal cortex) showed widespread but regionally specific pattern of increased immunoreactivity of the markers, in particular for the partially proteolyzed fragments (all three) and aggregates (GFAP). In contrast, immunoreactivity of the three markers was largely normal in PD in brain regions examined with the exception of trends for variably increased levels of cleaved vimentin in substantia nigra and frontal cortex. In patients with PD, GFAP levels in the substantia nigra correlated inversely with α-synuclein accumulation whereas the opposite was true for MSA. Our biochemical findings of generally normal protein levels of astroglial markers in substantia nigra of PD, and negative correlation with α-synuclein concentration, are consistent with some recent neuropathology reports of mild astroglial response and with the speculation that astrogliosis might be suppressed in this disorder by excessive α-synuclein accumulation. Should astrogliosis protect, to some extent, the degenerating substantia nigra from damage, therapeutics aimed at normalization of astrocyte reaction in PD could be helpful.


Subject(s)
Astrocytes/metabolism , Caudate Nucleus/metabolism , Frontal Lobe/metabolism , Parkinson Disease/metabolism , Putamen/metabolism , Aged , Biomarkers/metabolism , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Glial Fibrillary Acidic Protein/metabolism , HSP27 Heat-Shock Proteins/metabolism , Heat-Shock Proteins , Humans , Molecular Chaperones , Multiple System Atrophy/metabolism , Supranuclear Palsy, Progressive/metabolism , Vimentin/metabolism
12.
Mov Disord ; 30(2): 160-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25641350

ABSTRACT

Dopamine agonist medications with high affinity for the D3 dopamine receptor are commonly used to treat Parkinson's disease, and have been associated with pathological behaviors categorized under the umbrella of impulse control disorders (ICD). The aim of this study was to investigate whether ICD in Parkinson's patients are associated with greater D3 dopamine receptor availability. We used positron emission tomography (PET) radioligand imaging with the D3 dopamine receptor preferring agonist [¹¹C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) in Parkinson's patients with (n = 11) and without (n = 21) ICD, and age-, sex-, and education-matched healthy control subjects (n = 18). Contrary to hypotheses, [¹¹C]-(+)-PHNO binding in D3 -rich brain areas was not elevated in Parkinson's patients with ICD compared with those without; instead, [¹¹C]-(+)-PHNO binding in ventral striatum was 20% lower (P = 0.011), correlating with two measures of ICD severity (r = -0.8 and -0.9), which may reflect higher dopamine tone in ventral striatum. In dorsal striatum, where [¹¹C]-(+)-PHNO binding is associated with D2 receptor levels, [¹¹C]-(+)-PHNO binding was elevated across patients compared with controls. We conclude that although D3 dopamine receptors have been linked to the occurrence of ICD in Parkinson's patients. Our findings do not support the hypothesis that D3 receptor levels are elevated in Parkinson's patients with ICD. We also did not find ICD-related abnormalities in D2 receptor levels. Our findings argue against the possibility that differences in D2/3 receptor levels can account for the development of ICD in PD; however, we cannot rule out that differences in dopamine levels (particularly in ventral striatum) may be involved.


Subject(s)
Disruptive, Impulse Control, and Conduct Disorders/diagnostic imaging , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Adult , Aged , Aged, 80 and over , Disruptive, Impulse Control, and Conduct Disorders/etiology , Disruptive, Impulse Control, and Conduct Disorders/metabolism , Dopamine/metabolism , Dopamine Agents , Female , Humans , Male , Middle Aged , Oxazines , Parkinson Disease/complications , Parkinson Disease/metabolism , Positron-Emission Tomography/methods
13.
Neurobiol Dis ; 67: 107-18, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24704312

ABSTRACT

Animal data show that high doses of the stimulant drug methamphetamine can damage brain dopamine neurones; however, it is still uncertain whether methamphetamine, at any dose, is neurotoxic to human brain. Since gliosis is typically associated with brain damage and is observed in animal models of methamphetamine exposure, we measured protein levels (intact protein and fragments, if any) of markers of microgliosis (glucose transporter-5, human leukocyte antigens HLA-DRα [TAL.1B5] and HLA-DR/DQ/DPß [CR3/43]) and astrogliosis (glial fibrillary acidic protein, vimentin, and heat shock protein-27) in homogenates of autopsied brain of chronic methamphetamine users (n=20) and matched controls (n=23). Intact protein levels of all markers were, as expected, elevated (+28%-1270%, P<0.05) in putamen of patients with the neurodegenerative disorder multiple system atrophy (as a positive control) as were concentrations of fragments of glial fibrillary acidic protein, vimentin and heat shock protein-27 (+170%-4700%, P<0.005). In contrast, intact protein concentrations of the markers were normal in dopamine-rich striatum (caudate, putamen) and in the frontal cortex of the drug users. However, striatal levels of cleaved vimentin and heat shock protein-27 were increased (by 98%-211%, P<0.05), with positive correlations (r=0.41-0.60) observed between concentrations of truncated heat shock protein-27 and extent of dopamine loss (P=0.006) and levels of lipid peroxidation products 4-hydroxynonenal (P=0.046) and malondialdehyde (P=0.11). Our failure to detect increased intact protein levels of commonly used markers of microgliosis and astrogliosis could be explained by exposure to methamphetamine insufficient to cause a toxic process associated with overt gliosis; however, about half of the subjects had died of drug intoxication suggesting that "high" drug doses might have been used. Alternatively, drug tolerance to toxic effects might have occurred in the subjects, who were all chronic methamphetamine users. Nevertheless, the finding of above-normal levels of striatal vimentin and heat shock protein-27 fragments (which constituted 10-28% of the intact protein), for which changes in the latter correlated with those of several markers possibly suggestive of damage, does suggest that some astrocytic "disturbance" had occurred, which might in principle be related to methamphetamine neurotoxicity or to a neuroplastic remodeling process. Taken together, our neurochemical findings do not provide strong evidence for either marked microgliosis or astrogliosis in at least a subgroup of human recreational methamphetamine users who used the drug chronically and shortly before death. However, a logistically more difficult quantitative histopathological study is needed to confirm whether glial changes occur or do not occur in brain of human methamphetamine (and amphetamine) users.


Subject(s)
Brain/drug effects , Central Nervous System Stimulants , Gliosis/chemically induced , Methamphetamine , Adolescent , Adult , Brain/metabolism , Female , Gliosis/metabolism , Humans , Male , Young Adult
14.
Nat Commun ; 15(1): 5109, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877019

ABSTRACT

Positron emission tomography (PET) imaging of tau aggregation in Alzheimer's disease (AD) is helping to map and quantify the in vivo progression of AD pathology. To date, no high-affinity tau-PET radiopharmaceutical has been optimized for imaging non-AD tauopathies. Here we show the properties of analogues of a first-in-class 4R-tau lead, [18F]OXD-2115, using ligand-based design. Over 150 analogues of OXD-2115 were synthesized and screened in post-mortem brain tissue for tau affinity against [3H]OXD-2115, and in silico models were used to predict brain uptake. [18F]OXD-2314 was identified as a selective, high-affinity non-AD tau PET radiotracer with favorable brain uptake, dosimetry, and radiometabolite profiles in rats and non-human primate and is being translated for first-in-human PET studies.


Subject(s)
Alzheimer Disease , Brain , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Tauopathies , tau Proteins , Positron-Emission Tomography/methods , Animals , Humans , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Brain/diagnostic imaging , Brain/metabolism , Ligands , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Rats , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Fluorine Radioisotopes/chemistry , tau Proteins/metabolism , Male
15.
J Neurosci ; 32(4): 1353-9, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22279219

ABSTRACT

Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin ([11C]-(+)-PHNO). Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning after [11C]-(+)-PHNO. Compared with control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN; +46%; p<0.02) and in the globus pallidus (+9%; p=0.06) and ventral pallidum (+11%; p=0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (approximately -4%, NS; -12% in heavy users, p=0.01) and related to drug-use severity. The [11C]-(+)-PHNO binding ratio in D3-rich SN versus D2-rich dorsal striatum was 55% higher in MA users (p=0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported "drug wanting." We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users, although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.


Subject(s)
Dopamine Agents/metabolism , Methamphetamine/metabolism , Oxazines/metabolism , Positron-Emission Tomography , Receptors, Dopamine D3/metabolism , Substance-Related Disorders/diagnostic imaging , Substance-Related Disorders/metabolism , Adult , Carbon Radioisotopes/metabolism , Dopamine Agents/chemistry , Female , Humans , Ligands , Male , Positron-Emission Tomography/methods , Protein Binding/physiology , Young Adult
16.
J Med Chem ; 66(15): 10628-10638, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37487189

ABSTRACT

A chemical fingerprint search identified Z3777013540 (1-(5-(6-fluoro-1H-indol-2-yl)pyrimidin-2-yl)piperidin-4-ol; 1) as a potential 4R-tau binding ligand. Binding assays in post-mortem Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) brain with [3H]1 provided KD (nM) values in AD = 4.0, PSP = 5.1, and CBD = 4.5. In vivo positron emission tomography (PET) imaging in rats with [18F]1 demonstrated good brain penetration and rapid clearance from normal brain tissues. A subsequent molecular similarity search using 1 as the query revealed an additional promising compound, Z4169252340 (4-(5-(6-fluoro-1H-indol-2-yl)pyrimidin-2-yl)morpholine; 21). Binding assays with [3H]21 provided KD (nM) values in AD = 1.2, PSP = 1.6, and CBD = 1.7 and lower affinities for binding aggregated α-synuclein and amyloid-beta. PET imaging in rats with [18F]21 demonstrated a higher brain penetration than [18F]1 and rapid clearance from normal brain tissues. We anticipate that 1 and 21 will be useful for the identification of other potent novel 4R-tau radiotracers.


Subject(s)
Alzheimer Disease , Supranuclear Palsy, Progressive , Tauopathies , Animals , Rats , tau Proteins/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Supranuclear Palsy, Progressive/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism
17.
Front Psychiatry ; 14: 1195012, 2023.
Article in English | MEDLINE | ID: mdl-37333909

ABSTRACT

Introduction: Oxidative stress has been implicated in psychiatric disorders, including posttraumatic stress disorder (PTSD). Currently, the status of glutathione (GSH), the brain's most abundant antioxidant, in PTSD remains uncertain. Therefore, the current study investigated brain concentrations of GSH and peripheral concentrations of blood markers in individuals with PTSD vs. Healthy Controls (HC). Methods: GSH spectra was acquired in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) using MEGA-PRESS, a J-difference-editing acquisition method. Peripheral blood samples were analyzed for concentrations of metalloproteinase (MMP)-9, tissue inhibitors of MMP (TIMP)-1,2, and myeloperoxidase (MPO). Results: There was no difference in GSH between PTSD and HC in the ACC (n = 30 PTSD, n = 20 HC) or DLPFC (n = 14 PTSD, n = 18 HC). There were no group differences between peripheral blood markers (P > 0.3) except for (non-significantly) lower TIMP-2 in PTSD. Additionally, TIMP-2 and GSH in the ACC were positively related in those with PTSD. Finally, MPO and MMP-9 were negatively associated with duration of PTSD. Conclusions: We do not report altered GSH concentrations in the ACC or DLPFC in PTSD, however, systemic MMPs and MPO might be implicated in central processes and progression of PTSD. Future research should investigate these relationships in larger sample sizes.

18.
Sci Rep ; 13(1): 4970, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973385

ABSTRACT

Microglia are immune brain cells implicated in stress-related mental illnesses including posttraumatic stress disorder (PTSD). Their role in the pathophysiology of PTSD, and on neurobiological systems that regulate stress, is not completely understood. We tested the hypothesis that microglia activation, in fronto-limbic brain regions involved in PTSD, would be elevated in participants with occupation-related PTSD. We also explored the relationship between cortisol and microglia activation. Twenty participants with PTSD and 23 healthy controls (HC) completed positron emission tomography (PET) scanning of the 18-kDa translocator protein (TSPO), a putative biomarker of microglia activation using the probe [18F]FEPPA, and blood samples for measurement of cortisol. [18F]FEPPA VT was non-significantly elevated (6.5-30%) in fronto-limbic regions in PTSD participants. [18F]FEPPA VT was significantly higher in PTSD participants reporting frequent cannabis use compared to PTSD non-users (44%, p = 0.047). Male participants with PTSD (21%, p = 0.094) and a history of early childhood trauma (33%, p = 0.116) had non-significantly higher [18F]FEPPA VT. Average fronto-limbic [18F]FEPPA VT was positively related to cortisol (r = 0.530, p = 0.028) in the PTSD group only. Although we did not find a significant abnormality in TSPO binding in PTSD, findings suggest microglial activation might have occurred in a subgroup who reported frequent cannabis use. The relationship between cortisol and TSPO binding suggests a potential link between hypothalamic-pituitary-adrenal-axis dysregulation and central immune response to trauma which warrants further study.


Subject(s)
Stress Disorders, Post-Traumatic , Child, Preschool , Humans , Male , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/metabolism , Hydrocortisone/metabolism , Brain/diagnostic imaging , Brain/metabolism , Anxiety Disorders/metabolism , Positron-Emission Tomography/methods , Receptors, GABA/metabolism , Occupations
19.
Brain Sci ; 13(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37891745

ABSTRACT

BACKGROUND: Endocannabinoids and related N-acylethanolamines (NAEs) are bioactive lipids with important physiological functions and putative roles in mental health and addictions. Although chronic cannabis use is associated with endocannabinoid system changes, the status of circulating endocannabinoids and related NAEs in people with cannabis use disorder (CUD) is uncertain. METHODS: Eleven individuals with CUD and 54 healthy non-cannabis using control participants (HC) provided plasma for measurement by high-performance liquid chromatography-mass spectrometry of endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and related NAE fatty acids (N-docosahexaenoylethanolamine (DHEA) and N-oleoylethanolamine (OEA)). Participants were genotyped for the functional gene variant of FAAH (rs324420, C385A) which may affect concentrations of AEA as well as other NAEs (OEA, DHEA). RESULTS: In overnight abstinent CUD, AEA, OEA and DHEA concentrations were significantly higher (31-40%; p < 0.05) and concentrations of the endocannabinoid 2-AG were marginally elevated (55%, p = 0.13) relative to HC. There were no significant correlations between endocannabinoids/NAE concentrations and cannabis analytes, self-reported cannabis use frequency or withdrawal symptoms. DHEA concentration was inversely related with marijuana craving (r = -0.86; p = 0.001). Genotype had no significant effect on plasma endocannabinoids/NAE concentrations. CONCLUSIONS: Our preliminary findings, requiring replication, might suggest that activity of the endocannabinoid system is elevated in chronic cannabis users. It is unclear whether this elevation is a compensatory response or a predating state. Studies examining endocannabinoids and NAEs during prolonged abstinence as well as the potential role of DHEA in craving are warranted.

20.
Neuropsychopharmacology ; 48(3): 508-517, 2023 02.
Article in English | MEDLINE | ID: mdl-36076020

ABSTRACT

Serum amyloid P component (SAP) is a universal constituent of human amyloid deposits including those in Alzheimer's disease. SAP has been observed to be elevated in patients with depression, and higher SAP levels are associated with better response to the antidepressant escitalopram. The mechanisms underlying these clinical observations remain unclear. We examined the effect of SAP on serotonin transporter (SERT) expression and localization using Western blot, confocal microscopy, and positron emission tomography with the radioligand [11C]DASB. We also investigated the effect of SAP on treatment response to escitalopram in mice with the forced swim test (FST), a classical behaviour paradigm to assess antidepressant effects. SAP reduced [11C]DASB binding as an index of SERT levels, consistent with Western blots showing decreased total SAP protein because of increased protein degradation. In conjunction with the global decrease in SERT levels, SAP also promotes VAMP-2 mediated SERT membrane insertion. SAP levels are correlated with behavioural despair and SSRI treatment response in mice with FST. In MDD patients, the SAP and membrane SERT levels are correlated with response to SSRI treatment. SAP has complex effects on SERT levels and localization, thereby modulating the effect of SSRIs, which could partially explain clinical variability in antidepressant treatment response. These results add to our understanding of the mechanism for antidepressant drug action, and with further work could be of clinical utility.


Subject(s)
Serotonin Plasma Membrane Transport Proteins , Serum Amyloid P-Component , Humans , Mice , Animals , Serotonin Plasma Membrane Transport Proteins/metabolism , Serum Amyloid P-Component/metabolism , Escitalopram , Antidepressive Agents/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL