Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Cell Oncol ; 7(1): 1688601, 2020.
Article in English | MEDLINE | ID: mdl-31993500

ABSTRACT

The breast tumors that are most difficult to eradicate with chemotherapy have wild-type TP53 and preferentially enter senescence after treatment. One factor contributing to the persistence of senescent cells in residual disease: acquisition of a novel phenotype that allows cannibalism of entire cells and engulfment of other substrates.

2.
J Cell Biol ; 218(11): 3827-3844, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31530580

ABSTRACT

In chemotherapy-treated breast cancer, wild-type p53 preferentially induces senescence over apoptosis, resulting in a persisting cell population constituting residual disease that drives relapse and poor patient survival via the senescence-associated secretory phenotype. Understanding the properties of tumor cells that allow survival after chemotherapy treatment is paramount. Using time-lapse and confocal microscopy to observe interactions of cells in treated tumors, we show here that chemotherapy-induced senescent cells frequently engulf both neighboring senescent or nonsenescent tumor cells at a remarkable frequency. Engulfed cells are processed through the lysosome and broken down, and cells that have engulfed others obtain a survival advantage. Gene expression analysis showed a marked up-regulation of conserved macrophage-like program of engulfment in chemotherapy-induced senescent cell lines and tumors. Our data suggest compelling explanations for how senescent cells persist in dormancy, how they manage the metabolically expensive process of cytokine production that drives relapse in those tumors that respond the worst, and a function for their expanded lysosomal compartment.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Cellular Senescence/drug effects , Doxorubicin/pharmacology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , MCF-7 Cells , Mice , Tumor Cells, Cultured
3.
Article in English | MEDLINE | ID: mdl-27881444

ABSTRACT

Transformed cells have properties that allow them to survive and proliferate inappropriately. These characteristics often arise as a result of mutations caused by DNA damage. p53 suppresses transformation by removing the proliferative or survival capacity of cells with DNA damage or inappropriate cell-cycle progression. Cellular senescence, marked by morphological and gene expression changes, is a critical component of p53-mediated tumor suppression. In response to stress, p53 can facilitate an arrest and senescence program in cells exposed to stresses such as DNA damage and oncogene activation, preventing transformation. Senescent cells are evident in precancerous adenoma-type lesions, whereas proliferating, malignant tumors have bypassed senescence, either by p53 mutation or inactivation of the p53 pathway by other means. Tumors that have retained wild-type p53 often show a p53-mediated senescence response to chemotherapy. This response is actually detrimental in some tumor types, as senescent cells can drive relapse by persisting and producing cytokines and chemokines through an acquired secretory phenotype.


Subject(s)
Cell Division/genetics , Cellular Senescence/genetics , Tumor Suppressor Protein p53/genetics , DNA Damage , Humans , Neoplasms/genetics , Signal Transduction , Tumor Suppressor Protein p53/physiology
SELECTION OF CITATIONS
SEARCH DETAIL