Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Hum Mol Genet ; 33(11): 991-1000, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38484778

ABSTRACT

MUNC18-1 is an essential protein of the regulated secretion machinery. De novo, heterozygous mutations in STXBP1, the human gene encoding this protein, lead to a severe neurodevelopmental disorder. Here, we describe the electrophysiological characteristics of a unique case of STXBP1-related disorder caused by a homozygous mutation (L446F). We engineered this mutation in induced pluripotent stem cells from a healthy donor (STXBP1LF/LF) to establish isogenic cell models. We performed morphological and electrophysiological analyses on single neurons grown on glial micro-islands. Human STXBP1LF/LF neurons displayed normal morphology and normal basal synaptic transmission but increased paired-pulse ratios and charge released, and reduced synaptic depression compared to control neurons. Immunostainings revealed normal expression levels but impaired recognition by a mutation-specific MUNC18-1 antibody. The electrophysiological gain-of-function phenotype is in line with earlier overexpression studies in Stxbp1 null mouse neurons, with some potentially human-specific features. Therefore, the present study highlights important differences between mouse and human neurons critical for the translatability of pre-clinical studies.


Subject(s)
Homozygote , Induced Pluripotent Stem Cells , Munc18 Proteins , Neurons , Synaptic Transmission , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Synaptic Transmission/genetics , Induced Pluripotent Stem Cells/metabolism , Animals , Mice , Mutation , Synapses/metabolism , Synapses/genetics , Synapses/pathology
2.
J Biol Chem ; 300(6): 107321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677517

ABSTRACT

Neuropeptides are the largest group of chemical signals in the brain. More than 100 different neuropeptides modulate various brain functions and their dysregulation has been associated with neurological disorders. Neuropeptides are packed into dense core vesicles (DCVs), which fuse with the plasma membrane in a calcium-dependent manner. Here, we describe a novel high-throughput assay for DCV exocytosis using a chimera of Nanoluc luciferase and the DCV-cargo neuropeptide Y (NPY). The NPY-Nanoluc reporter colocalized with endogenous DCV markers in all neurons with little mislocalization to other cellular compartments. NPY-Nanoluc reported DCV exocytosis in both rodent and induced pluripotent stem cell-derived human neurons, with similar depolarization, Ca2+, RAB3, and STXBP1/MUNC18 dependence as low-throughput assays. Moreover, NPY-Nanoluc accurately reported modulation of DCV exocytosis by known modulators diacylglycerol analog and Ca2+ channel blocker and showed a higher assay sensitivity than a widely used single-cell low-throughput assay. Lastly, we showed that Nanoluc coupled to other secretory markers reports on constitutive secretion. In conclusion, the NPY-Nanoluc is a sensitive reporter of DCV exocytosis in mammalian neurons, suitable for pharmacological and genomic screening for DCV exocytosis genes and for mechanism-based treatments for central nervous system disorders.


Subject(s)
Exocytosis , High-Throughput Screening Assays , Neurons , Neuropeptide Y , Animals , Humans , Neurons/metabolism , Neurons/cytology , Mice , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , High-Throughput Screening Assays/methods , Secretory Vesicles/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Calcium/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology
3.
J Neurosci ; 43(45): 7616-7625, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37852790

ABSTRACT

Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENT Neuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVs in vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.


Subject(s)
Dense Core Vesicles , Neuropeptides , Animals , Humans , Secretory Vesicles/metabolism , Neurons/physiology , Hippocampus/physiology , Neuropeptides/metabolism , Nerve Growth Factors/metabolism , Mammals
4.
J Cell Sci ; 135(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36245272

ABSTRACT

MUNC18-1 (also known as syntaxin-binding protein-1, encoded by Stxbp1) binds to syntaxin-1. Together, these proteins regulate synaptic vesicle exocytosis and have a separate role in neuronal viability. In Stxbp1 null mutant neurons, syntaxin-1 protein levels are reduced by 70%. Here, we show that dynamin-1 protein levels are reduced at least to the same extent, and transcript levels of Dnm1 (which encodes dynamin-1) are reduced by 50% in Stxbp1 null mutant brain. Several, but not all, other endocytic proteins were also found to be reduced, but to a lesser extent. The reduced dynamin-1 expression was not observed in SNAP25 null mutants or in double-null mutants of MUNC13-1 and -2 (also known as Unc13a and Unc13b, respectively), in which synaptic vesicle exocytosis is also blocked. Co-immunoprecipitation experiments demonstrated that dynamin-1 and MUNC18-1 do not bind directly. Furthermore, MUNC18-1 levels were unaltered in neurons lacking all three dynamin paralogues. Finally, overexpression of dynamin-1 was not sufficient to rescue neuronal viability in Stxbp1 null mutant neurons; thus, the reduction in dynamin-1 is not the single cause of neurodegeneration of these neurons. The reduction in levels of dynamin-1 protein and mRNA, as well as of other endocytosis proteins, in Stxbp1 null mutant neurons suggests that MUNC18-1 directly or indirectly controls expression of other presynaptic genes.


Subject(s)
Dynamin I , Munc18 Proteins , Dynamin I/genetics , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Syntaxin 1/genetics , Syntaxin 1/metabolism , Neurons/metabolism , Exocytosis/physiology
5.
Mol Psychiatry ; 28(4): 1545-1556, 2023 04.
Article in English | MEDLINE | ID: mdl-36385170

ABSTRACT

Studies using induced pluripotent stem cells (iPSCs) are gaining momentum in brain disorder modelling, but optimal study designs are poorly defined. Here, we compare commonly used designs and statistical analysis for different research aims. Furthermore, we generated immunocytochemical, electrophysiological, and proteomic data from iPSC-derived neurons of five healthy subjects, analysed data variation and conducted power simulations. These analyses show that published case-control iPSC studies are generally underpowered. Designs using isogenic iPSC lines typically have higher power than case-control designs, but generalization of conclusions is limited. We show that, for the realistic settings used in this study, a multiple isogenic pair design increases absolute power up to 60% or requires up to 5-fold fewer lines. A free web tool is presented to explore the power of different study designs, using any (pilot) data.


Subject(s)
Brain Diseases , Induced Pluripotent Stem Cells , Humans , Proteomics , Case-Control Studies , Healthy Volunteers
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903230

ABSTRACT

Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.


Subject(s)
Brain/metabolism , Neurons/metabolism , Neurotransmitter Agents/chemistry , Synaptotagmin I/genetics , Synaptotagmins/genetics , Animals , Calcium/chemistry , Calcium/metabolism , Dense Core Vesicles/genetics , Dense Core Vesicles/metabolism , Gene Expression Regulation/genetics , Hippocampus/metabolism , Humans , Mice , Nerve Growth Factors/chemistry , Nerve Growth Factors/metabolism , Neurons/pathology , Neuropeptides/chemistry , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism
7.
EMBO J ; 38(17): e101289, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31368584

ABSTRACT

Synapse development requires spatiotemporally regulated recruitment of synaptic proteins. In this study, we describe a novel presynaptic mechanism of cis-regulated oligomerization of adhesion molecules that controls synaptogenesis. We identified synaptic adhesion-like molecule 1 (SALM1) as a constituent of the proposed presynaptic Munc18/CASK/Mint1/Lin7b organizer complex. SALM1 preferentially localized to presynaptic compartments of excitatory hippocampal neurons. SALM1 depletion in excitatory hippocampal primary neurons impaired Neurexin1ß- and Neuroligin1-mediated excitatory synaptogenesis and reduced synaptic vesicle clustering, synaptic transmission, and synaptic vesicle release. SALM1 promoted Neurexin1ß clustering in an F-actin- and PIP2-dependent manner. Two basic residues in SALM1's juxtamembrane polybasic domain are essential for this clustering. Together, these data show that SALM1 is a presynaptic organizer of synapse development by promoting F-actin/PIP2-dependent clustering of Neurexin.


Subject(s)
Actins/metabolism , Calcium-Binding Proteins/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Synapses/metabolism , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cells, Cultured , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Membrane Glycoproteins/genetics , Mice , Nerve Tissue Proteins/genetics , Neurogenesis
8.
PLoS Biol ; 18(8): e3000826, 2020 08.
Article in English | MEDLINE | ID: mdl-32776935

ABSTRACT

Ca2+/calmodulin-dependent kinase II (CaMKII) regulates synaptic plasticity in multiple ways, supposedly including the secretion of neuromodulators like brain-derived neurotrophic factor (BDNF). Here, we show that neuromodulator secretion is indeed reduced in mouse α- and ßCaMKII-deficient (αßCaMKII double-knockout [DKO]) hippocampal neurons. However, this was not due to reduced secretion efficiency or neuromodulator vesicle transport but to 40% reduced neuromodulator levels at synapses and 50% reduced delivery of new neuromodulator vesicles to axons. αßCaMKII depletion drastically reduced neuromodulator expression. Blocking BDNF secretion or BDNF scavenging in wild-type neurons produced a similar reduction. Reduced neuromodulator expression in αßCaMKII DKO neurons was restored by active ßCaMKII but not inactive ßCaMKII or αCaMKII, and by CaMKII downstream effectors that promote cAMP-response element binding protein (CREB) phosphorylation. These data indicate that CaMKII regulates neuromodulation in a feedback loop coupling neuromodulator secretion to ßCaMKII- and CREB-dependent neuromodulator expression and axonal targeting, but CaMKIIs are dispensable for the secretion process itself.


Subject(s)
Astrocytes/metabolism , Brain-Derived Neurotrophic Factor/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium/metabolism , Neurons/metabolism , Protein Subunits/genetics , Animals , Astrocytes/cytology , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/deficiency , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Feedback, Physiological , Gene Expression Regulation , Hippocampus/cytology , Hippocampus/metabolism , Mice , Mice, Transgenic , Neurons/cytology , Phosphorylation , Primary Cell Culture , Protein Subunits/deficiency , Synapses/physiology , Synaptic Transmission , Time-Lapse Imaging
9.
J Neurosci ; 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34103363

ABSTRACT

Neuropeptide secretion from dense-core vesicles (DCVs) controls many brain functions. Several components of the DCV exocytosis machinery have recently been identified, but the participation of a SEC1/MUNC18 (SM) protein has remained elusive. Here, we tested the ability of the three exocytic SM proteins expressed in the mammalian brain, MUNC18-1/2/3, to support neuropeptide secretion. We quantified DCV exocytosis at a single vesicle resolution upon action potential train-stimulation in mouse CNS neurons (of unknown sex) using pHluorin- and/or mCherry-tagged Neuropeptide-Y (NPY) or Brain-Derived Neurotrophic Factor (BDNF). Conditional inactivation of Munc18-1 abolished all DCV exocytosis. Expression of MUNC18-1, but not MUNC18-2 or MUNC18-3, supported DCV exocytosis in Munc18-1 null neurons. Heterozygous (HZ) inactivation of Munc18-1, as a model for reduced MUNC18-1 expression, impaired DCV exocytosis, especially during the initial phase of train-stimulation, when the release was maximal. These data show that neurons critically and selectively depend on MUNC18-1 for neuropeptide secretion. Impaired neuropeptide secretion may explain aspects of the behavioral and neurodevelopmental phenotypes that were observed in Munc18-1 HZ mice.SIGNIFICANCE STATEMENT:Neuropeptide secretion from dense-core vesicles (DCVs) modulates synaptic transmission, sleep, appetite, cognition and mood. However, the mechanisms of DCV exocytosis are poorly characterized. Here, we identify MUNC18-1 as an essential component for neuropeptide secretion from DCVs. Paralogs MUNC18-2 or -3 cannot compensate for MUNC18-1. MUNC18-1 is the first protein identified to be essential for both neuropeptide secretion and synaptic transmission. In heterozygous Munc18-1 neurons, that have a 50% reduced MUNC18-1 expression and model the human STXBP1 syndrome, DCV exocytosis is impaired, especially during the initial phase of train-stimulation, when the release is maximal. These data show that MUNC18-1 is essential for neuropeptide secretion and that impaired neuropeptide secretion upon reduced MUNC18-1 expression may contribute to the symptoms of STXBP1 syndrome.

10.
EMBO J ; 37(20)2018 10 15.
Article in English | MEDLINE | ID: mdl-30185408

ABSTRACT

Neuropeptides are essential signaling molecules transported and secreted by dense-core vesicles (DCVs), but the number of DCVs available for secretion, their subcellular distribution, and release probability are unknown. Here, we quantified DCV pool sizes in three types of mammalian CNS neurons in vitro and in vivo Super-resolution and electron microscopy reveal a total pool of 1,400-18,000 DCVs, correlating with neurite length. Excitatory hippocampal and inhibitory striatal neurons in vitro have a similar DCV density, and thalamo-cortical axons in vivo have a slightly higher density. Synapses contain on average two to three DCVs, at the periphery of synaptic vesicle clusters. DCVs distribute equally in axons and dendrites, but the vast majority (80%) of DCV fusion events occur at axons. The release probability of DCVs is 1-6%, depending on the stimulation. Thus, mammalian CNS neurons contain a large pool of DCVs of which only a small fraction can fuse, preferentially at axons.


Subject(s)
Axons , Corpus Striatum , Hippocampus , Neurites , Secretory Vesicles , Synapses , Animals , Axons/metabolism , Axons/ultrastructure , Corpus Striatum/metabolism , Corpus Striatum/ultrastructure , Hippocampus/metabolism , Hippocampus/ultrastructure , Mice , Neurites/metabolism , Neurites/ultrastructure , Secretory Vesicles/metabolism , Secretory Vesicles/ultrastructure , Synapses/metabolism , Synapses/ultrastructure
11.
J Neurochem ; 157(3): 450-466, 2021 05.
Article in English | MEDLINE | ID: mdl-33259669

ABSTRACT

Loss of the exocytic Sec1/MUNC18 protein MUNC18-1 or its target-SNARE partners SNAP25 and syntaxin-1 results in rapid, cell-autonomous and unexplained neurodegeneration, which is independent of their known role in synaptic vesicle exocytosis. cis-Golgi abnormalities are the earliest cellular phenotypes before degeneration occurs. Here, we investigated whether loss of MUNC18-1 causes defects in intracellular membrane transport pathways in primary murine neurons that may explain neurodegeneration. Electron, confocal and super resolution microscopy confirmed that loss of MUNC18-1 expression results in a smaller cis-Golgi. In addition, we now show that medial-Golgi and the trans-Golgi Network are also affected. However, stacking and cisternae ultrastructure of the Golgi were normal. Overall, ultrastructure of null mutant neurons was remarkably normal just hours before cell death occurred. By synchronizing protein trafficking by conditional cargo retention in the endoplasmic reticulum using selective hooks (RUSH) and immunocytochemistry, we show that anterograde Endoplasmic Reticulum-to-Golgi and Golgi exit of endogenous and exogenous proteins were normal. In contrast, loss of MUNC18-1 caused reduced retrograde Cholera Toxin B-subunit transport from the plasma membrane to the Golgi. In addition, MUNC18-1-deficiency resulted in abnormalities in retrograde TrkB trafficking in an antibody uptake assay. We conclude that MUNC18-1 deficient neurons have normal anterograde but reduced retrograde transport to the Golgi. The impairments in retrograde pathways suggest a role of MUNC18-1 in endosomal SNARE-dependent fusion and provide a plausible explanation for the observed Golgi abnormalities and cell death in MUNC18-1 deficient neurons.


Subject(s)
Biological Transport/genetics , Munc18 Proteins/deficiency , Munc18 Proteins/genetics , Animals , Cell Death , Cell Membrane/metabolism , Cells, Cultured , Cholera Toxin/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/pathology , Golgi Apparatus/ultrastructure , Immunohistochemistry , Intracellular Membranes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Metabolic Networks and Pathways/genetics , Mice , Mice, Knockout , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/pathology , Neurons/ultrastructure , SNARE Proteins/deficiency , SNARE Proteins/genetics
12.
Brain ; 143(2): 441-451, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31855252

ABSTRACT

Heterozygous mutations in the STXBP1 gene encoding the presynaptic protein MUNC18-1 cause STXBP1 encephalopathy, characterized by developmental delay, intellectual disability and epilepsy. Impaired mutant protein stability leading to reduced synaptic transmission is considered the main underlying pathogenetic mechanism. Here, we report the first two cases carrying a homozygous STXBP1 mutation, where their heterozygous siblings and mother are asymptomatic. Both cases were diagnosed with Lennox-Gastaut syndrome. In Munc18-1 null mouse neurons, protein stability of the disease variant (L446F) is less dramatically affected than previously observed for heterozygous disease mutants. Neurons expressing Munc18L446F showed minor changes in morphology and synapse density. However, patch clamp recordings demonstrated that L446F causes a 2-fold increase in evoked synaptic transmission. Conversely, paired pulse plasticity was reduced and recovery after stimulus trains also. Spontaneous release frequency and amplitude, the readily releasable vesicle pool and the kinetics of short-term plasticity were all normal. Hence, the homozygous L446F mutation causes a gain-of-function phenotype regarding release probability and synaptic transmission while having less impact on protein levels than previously reported (heterozygous) mutations. These data show that STXBP1 mutations produce divergent cellular effects, resulting in different clinical features, while sharing the overarching encephalopathic phenotype (developmental delay, intellectual disability and epilepsy).


Subject(s)
Brain Diseases/genetics , Gain of Function Mutation/genetics , Munc18 Proteins/genetics , Synaptic Transmission/genetics , Animals , Epilepsy/genetics , Epilepsy/physiopathology , Intellectual Disability/genetics , Mice, Knockout
13.
EMBO J ; 35(11): 1236-50, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27056679

ABSTRACT

Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Munc18 Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synaptic Transmission , Animals , Electric Stimulation , Embryo, Mammalian , Excitatory Postsynaptic Potentials , Female , HEK293 Cells , Hippocampus/physiology , Humans , In Vitro Techniques , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neurons/physiology , Neurons/ultrastructure , Phosphorylation , Pregnancy , Rats, Wistar , Stress, Psychological/metabolism
14.
J Cell Sci ; 130(11): 1877-1889, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28404788

ABSTRACT

Neuronal dense-core vesicles (DCVs) transport and secrete neuropeptides necessary for development, plasticity and survival, but little is known about their fusion mechanism. We show that Snap-25-null mutant (SNAP-25 KO) neurons, previously shown to degenerate after 4 days in vitro (DIV), contain fewer DCVs and have reduced DCV fusion probability in surviving neurons at DIV14. At DIV3, before degeneration, SNAP-25 KO neurons show normal DCV fusion, but one day later fusion is significantly reduced. To test if other SNAP homologs support DCV fusion, we expressed SNAP-23, SNAP-29 or SNAP-47 in SNAP-25 KO neurons. SNAP-23 and SNAP-29 rescued viability and supported DCV fusion in SNAP-25 KO neurons, but SNAP-23 did so more efficiently. SNAP-23 also rescued synaptic vesicle (SV) fusion while SNAP-29 did not. SNAP-47 failed to rescue viability and did not support DCV or SV fusion. These data demonstrate a developmental switch, in hippocampal neurons between DIV3 and DIV4, where DCV fusion becomes SNAP-25 dependent. Furthermore, SNAP-25 homologs support DCV and SV fusion and neuronal viability to variable extents - SNAP-23 most effectively, SNAP-29 less so and SNAP-47 ineffectively.


Subject(s)
Hippocampus/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Secretory Vesicles/metabolism , Synaptosomal-Associated Protein 25/genetics , Animals , Biological Transport , Cell Death/genetics , Embryo, Nonmammalian , Exocytosis , Gene Expression Regulation , Genetic Complementation Test , Hippocampus/pathology , Membrane Fusion , Mice , Mice, Knockout , Neurons/pathology , Presynaptic Terminals/pathology , Primary Cell Culture , Protein Isoforms/genetics , Protein Isoforms/metabolism , Qb-SNARE Proteins/genetics , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/genetics , Qc-SNARE Proteins/metabolism , Secretory Vesicles/pathology , Synaptic Transmission , Synaptosomal-Associated Protein 25/deficiency
15.
Brain ; 141(5): 1350-1374, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29538625

ABSTRACT

De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.


Subject(s)
Brain Diseases/complications , Brain Diseases/genetics , Epilepsy/physiopathology , Haploinsufficiency/genetics , Intellectual Disability/genetics , Munc18 Proteins/genetics , Animals , Anticonvulsants/therapeutic use , Brain Diseases/drug therapy , Cells, Cultured , Cerebral Cortex/cytology , Embryo, Mammalian , Epilepsy/drug therapy , Epilepsy/genetics , Exploratory Behavior/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Intellectual Disability/complications , Levetiracetam/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Transgenic , Munc18 Proteins/metabolism , Nerve Tissue Proteins/metabolism , Synapsins/genetics , Synapsins/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/genetics
16.
Proc Natl Acad Sci U S A ; 113(18): 5095-100, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27091977

ABSTRACT

Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.


Subject(s)
Action Potentials/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Presynaptic Terminals/physiology , Protein Kinase C/metabolism , Synaptotagmin I/metabolism , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout , Munc18 Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation/physiology
17.
J Neurosci ; 37(17): 4525-4539, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28348137

ABSTRACT

The loss of presynaptic proteins Munc18-1, syntaxin-1, or SNAP-25 is known to produce cell death, but the underlying features have not been compared experimentally. Here, we investigated these features in cultured mouse CNS and DRG neurons. Side-by-side comparisons confirmed massive cell death, before synaptogenesis, within 1-4 DIV upon loss of t-SNAREs (syntaxin-1, SNAP-25) or Munc18-1, but not v-SNAREs (synaptobrevins/VAMP1/2/3 using tetanus neurotoxin (TeNT), also in TI-VAMP/VAMP7 knock-out (KO) neurons). A condensed cis-Golgi was the first abnormality observed upon Munc18-1 or SNAP-25 loss within 3 DIV. This phenotype was distinct from the Golgi fragmentation observed in apoptosis. Cell death was too rapid after syntaxin-1 loss to study Golgi abnormalities. Syntaxin-1 and Munc18-1 depend on each other for normal cellular levels. We observed that endogenous syntaxin-1 accumulates at the Golgi of Munc18-1 KO neurons. However, expression of a non-neuronal Munc18 isoform that does not bind syntaxin-1, Munc18-3, in Munc18-1 KO neurons prevented cell death and restored normal cis-Golgi morphology, but not synaptic transmission or syntaxin-1 targeting. Finally, we observed that DRG neurons are the only Munc18-1 KO neurons that do not degenerate in vivo or in vitro In these neurons, cis-Golgi abnormalities were less severe, with no changes in Golgi shape. Together, these data demonstrate that cell death upon Munc18-1, syntaxin-1, or SNAP-25 loss occurs via a degenerative pathway unrelated to the known synapse function of these proteins and involving early cis-Golgi abnormalities, distinct from apoptosis.SIGNIFICANCE STATEMENT This study provides new insights in a neurodegeneration pathway triggered by the absence of specific proteins involved in synaptic transmission (syntaxin-1, Munc18-1, SNAP-25), whereas other proteins involved in the same molecular process (synaptobrevins, Munc13-1/2) do not cause degeneration. Massive cell death occurs in cultured neurons upon depleting syntaxin-1, Munc18-1, and/or SNAP-25, well before synapse formation. This study characterizes several relevant cellular phenotypes, especially early cis-Golgi abnormalities, distinct from abnormalities observed during apoptosis, and rules out several other phenotypes as causal (defects in syntaxin-1 targeting and synaptic transmission). As proteins, such as syntaxin-1, Munc18-1, or SNAP-25, modulate α-synuclein neuropathy and/or are dysregulated in Alzheimer's disease, understanding this type of neurodegeneration may provide new links between synaptic defects and neurodegeneration in humans.


Subject(s)
Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Munc18 Proteins/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Synaptosomal-Associated Protein 25/genetics , Syntaxin 1/genetics , Animals , Apoptosis , Cell Death/genetics , Cells, Cultured , Exocytosis/genetics , Golgi Apparatus/pathology , Mice , Mice, Knockout , Neurodegenerative Diseases/pathology , Synapses/pathology
18.
J Neurochem ; 144(3): 241-254, 2018 02.
Article in English | MEDLINE | ID: mdl-29178418

ABSTRACT

Chromogranin A and B (Cgs) are considered to be master regulators of cargo sorting for the regulated secretory pathway (RSP) and dense-core vesicle (DCV) biogenesis. To test this, we analyzed the release of neuropeptide Y (NPY)-pHluorin, a live RSP reporter, and the distribution, number, and appearance of DCVs, in mouse hippocampal neurons lacking expression of CHGA and CHGB genes. qRT-PCR analysis showed that expression of other granin family members was not significantly altered in CgA/B-/- neurons. As synaptic maturation of developing neurons depends on secretion of trophic factors in the RSP, we first analyzed neuronal development in standardized neuronal cultures. Surprisingly, dendritic and axonal length, arborization, synapse density, and synaptic vesicle accumulation in synapses were all normal in CgA/B-/- neurons. Moreover, the number of DCVs outside the soma, stained with endogenous marker Secretogranin II, the number of NPY-pHluorin puncta, and the total amount of reporter in secretory compartments, as indicated by pH-sensitive NPY-pHluorin fluorescence, were all normal in CgA/B-/- neurons. Electron microscopy revealed that synapses contained a normal number of DCVs, with a normal diameter, in CgA/B-/- neurons. In contrast, CgA/B-/- chromaffin cells contained fewer and smaller secretory vesicles with a smaller core size, as previously reported. Finally, live-cell imaging at single vesicle resolution revealed a normal number of fusion events upon bursts of action potentials in CgA/B-/- neurons. These events had normal kinetics and onset relative to the start of stimulation. Taken together, these data indicate that the two chromogranins are dispensable for cargo sorting in the RSP and DCV biogenesis in mouse hippocampal neurons.


Subject(s)
Chromogranin A/physiology , Chromogranin B/physiology , Exocytosis , Neurons/physiology , Organelle Biogenesis , Secretory Vesicles/physiology , Animals , Chromogranin A/genetics , Chromogranin B/genetics , Female , Hippocampus/physiology , Hippocampus/ultrastructure , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/ultrastructure , Primary Cell Culture , Secretory Vesicles/ultrastructure , Synapses/ultrastructure
19.
EMBO J ; 31(9): 2156-68, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22446389

ABSTRACT

Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission.


Subject(s)
Munc18 Proteins/physiology , SNARE Proteins/physiology , Synaptic Transmission/physiology , Animals , Mice , Mice, Knockout , Neurons/physiology , Point Mutation , Protein Binding , Synaptic Vesicles
20.
bioRxiv ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39314491

ABSTRACT

Mutations in the microtubule binding motor protein, kinesin family member 5A (KIF5A), cause the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. While KIF5 family members transport a variety of cargos along axons, it is still unclear which cargos are affected by KIF5A mutations. We generated KIF5A null mutant human motor neurons to investigate the impact of KIF5A loss on the transport of various cargoes and its effect on motor neuron function at two different timepoints in vitro. The absence of KIF5A resulted in reduced neurite complexity in young motor neurons (DIV14) and significant defects in axonal regeneration capacity at all developmental stages. KIF5A loss did not affect neurofilament transport but resulted in decreased mitochondria motility and anterograde speed at DIV42. More prominently, KIF5A depletion strongly reduced anterograde transport of SFPQ-associated RNA granules in DIV42 motor neuron axons. We conclude that KIF5A most prominently functions in human motor neurons to promote axonal regrowth after injury as well as to anterogradely transport mitochondria and, to a larger extent, SFPQ-associated RNA granules in a time-dependent manner.

SELECTION OF CITATIONS
SEARCH DETAIL