Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phytopathology ; 112(2): 261-270, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34261341

ABSTRACT

Exotic diseases and pests of trees have caused continental-scale disturbances in forest ecosystems and industries, and their invasions are considered largely unpredictable. We tested the concept of preinvasion assessment of not yet invasive organisms, which enables empirical risk assessment of potential invasion and impact. Our example assesses fungi associated with Old World bark and ambrosia beetles and their potential to impact North American trees. We selected 55 Asian and European scolytine beetle species using host use, economic, and regulatory criteria. We isolated 111 of their most consistent fungal associates and tested their effect on four important southeastern American pine and oak species. Our test dataset found no highly virulent pathogens that should be classified as an imminent threat. Twenty-two fungal species were minor pathogens, which may require context-dependent response for their vectors at North American borders, while most of the tested fungi displayed no significant impact. Our results are significant in three ways; they ease the concerns over multiple overseas fungus vectors suspected of heightened potential risk, they provide a basis for the focus on the prevention of introduction and establishment of species that may be of consequence, and they demonstrate that preinvasion assessment, if scaled up, can support practical risk assessment of exotic pathogens.


Subject(s)
Coleoptera , Trees , Animals , Coleoptera/microbiology , Coleoptera/physiology , Ecosystem , Fungi/physiology , Plant Bark , Plant Diseases/microbiology , Trees/microbiology
2.
Plant Dis ; 105(10): 3087-3091, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34702082

ABSTRACT

In Japan, no association between the ambrosia beetle and their fungal symbionts causing branch dieback or tree mortality on maple, Acer amoenum, has been reported. However, we identified dieback of several branches and numerous holes created by three species of ambrosia beetles, Euwallacea fornicatus, Euwallacea interjectus, and Platypus calamus, on Acer amoenum trees at the University of Tokyo Tanashi Forest, Tokyo Metropolis, Japan, in 2016. The high attack density of the beetles was observed on the weakened trees; however, the contribution of the associated fungi to the branch dieback was still unknown. We isolated fungi carried by these three beetles and inoculated them to Acer amoenum cut main trunks and sapling branches to determine whether the associated fungi caused the branch dieback. Fusarium euwallaceae was isolated from all Euwallacea fornicatus and Euwallacea interjectus, whereas Arthrinium phaeospermum, Raffaelea cyclorhipidia, and Epicoccum nigrum were isolated from P. calamus, with 35, 15, and 5% isolation frequencies, respectively. Inoculation with F. euwallaceae and R. cyclorhipidia induced statistically significantly wider sapwood discoloration (six and four times wider for F. euwallaceae and R. cyclorhipidia, respectively) than the controls, and larger water-conductance loss (2 and 1.7 times larger for F. euwallaceae and R. cyclorhipidia, respectively) than the controls. However, the observed lesions were not large enough to cause discoloration, and symptoms of dieback were not observed, even 13 months after the inoculation. Therefore, we concluded that the virulence of the four investigated fungi to Acer amoenum was very low and that these fungi were likely not the primary cause of the branch dieback.


Subject(s)
Acer , Fungi/pathogenicity , Plant Diseases/microbiology , Weevils , Acer/microbiology , Animals , Virulence , Weevils/microbiology
3.
J Am Chem Soc ; 135(32): 11784-6, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23902420

ABSTRACT

When the partial oxidation of benzene to phenol, which is one of the most important reactions in chemical industry, was conducted using TiO2 in the presence of a phenol-philic adsorbent derived from a layered silicate, phenol was recovered in unprecedentedly high yield and purity. This resulted from the fact that the adsorbent captured the generated phenol promptly, selectively, and effectively to prevent the overoxidation, after which the captured phenol could be easily eluted.

4.
Mycobiology ; 42(2): 210-4, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25071395

ABSTRACT

In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from more than 50% of inoculated twigs and seedlings. In the single inoculations, proportions of the transverse area of non-conductive sapwood at inoculation points and vertical lengths of discoloration expanded from the points were significantly different between the inoculation treatment and the control. In the multiple inoculations, no mortality was confirmed among the seedlings examined. These results showed that R. quercus-mongolicae can colonize sapwood, contribute to sapwood discoloration and disrupt sap flows around inoculation sites of Q. mongolica, although the pathogenicity of the fungus was not proven.

5.
Chem Commun (Camb) ; 48(56): 7073-5, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22684207

ABSTRACT

Hiroshima University Silicate-1 (HUS-1), composed of silicate sheets with a halved sodalite cage and the interlayer tetramethylammonium (TMA) cation in the cage, was modified with dimethyldichlorosilane to form the organic derivative in which a dimethyl group was grafted onto the interlayer surface and a part of the TMA was removed, and the silylated HUS-1 effectively and selectively adsorbed TMA from water even in the presence of aqueous phenol.


Subject(s)
Quaternary Ammonium Compounds/chemistry , Silanes/chemistry , Silicates/chemistry , Adsorption , Models, Molecular , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL