Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
1.
Eur J Clin Microbiol Infect Dis ; 43(5): 947-957, 2024 May.
Article in English | MEDLINE | ID: mdl-38512514

ABSTRACT

PURPOSE: To analyze the nationwide incidence of Salmonella infections in Denmark from 2013 to 2022. METHODS: Confirmed cases of Salmonella enterica subsp. enterica were examined using the National Register of Enteric Pathogens during 2013-2022. Proportions, incidence rates (IR), relative risk (RR), and 95% confidence intervals (CI) were calculated to assess differences in serotypes, invasiveness, age, sex, and travel exposure. RESULTS: We identified 9,944 Danish Salmonella enterica subsp. enterica cases, with an average annual incidence rate of 16.9 per 100,000 inhabitants, declining during the COVID-19 pandemic. Typhoidal cases totaled 206, with an average annual IR of 0.35 per 100,000 inhabitants. Enteric fever patients had a median age of 24 years (IQR:17-36). Leading non-typhoid Salmonella (NTS) serotypes were S. Enteritidis (26.4%), monophasic S. Typhimurium (16.5%), and S. Typhimurium (13.5%). Median age for NTS cases was 42 (IQR: 18-62), with even sex distribution, and a third reported travel prior to onset of disease. The overall percentage of invasive NTS (iNTS) infection was 8.1% (CI: 7.6-8.7). Eleven serotypes were associated with higher invasiveness, with S. Dublin and S. Panama having the highest invasiveness with age and sex-adjusted RR of 7.31 (CI: 6.35-8.43) and 5.42 (CI: 3.42-8.60), respectively, compared to all other NTS serotypes. Increased age was associated with higher RR for iNTS infection. CONCLUSION: During the decade, there was a limited number of typhoidal cases. The dominant NTS serotypes were S. Enteritidis and monophasic S. Typhimurium, whereas S. Dublin and S. Panama exhibited the highest invasive potential.


Subject(s)
Salmonella Infections , Serogroup , Travel , Humans , Adult , Male , Female , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Denmark/epidemiology , Young Adult , Middle Aged , Adolescent , Incidence , Child , Travel/statistics & numerical data , Child, Preschool , Aged , Salmonella/classification , Infant , Sex Factors , Age Factors
2.
Euro Surveill ; 28(15)2023 04.
Article in English | MEDLINE | ID: mdl-37052680

ABSTRACT

Between November and December 2021, the first ever recorded outbreak of enteroinvasive Escherichia coli in Denmark occurred at national scale. We describe the investigation of this outbreak, which was initially recognised in early December 2021. A total of 88 cases (58 female; 30 male) with a median age of 52 years (range: 0-91) were detected by PCR-based diagnostic methods. Case ascertainment was complicated by current culture-free diagnostic procedures, with only 34 cases confirmed by culture, serotyping and whole genome sequencing. Isolates from cases grouped into two serotypes (O136:H7 and O96:H19), which was supported by whole-genome-sequence-phylogeny, also yielding two clusters. Interviews of 42 cases and traceback investigation pointed towards consumption of ready-to-eat salads as the outbreak cause. While the ready-to-eat salads comprised different vegetables, imported spring onions were the only common ingredient and thus the likely source. Environmental investigations failed to recover outbreak strains. This report highlights the value of fast typing (here O-typing) to confirm cases in an outbreak situation. Timely communication and data sharing are also important, and were facilitated by the national collaboration between relevant laboratories, the public health institute and the veterinary and food administration. High hygiene standards for imported fresh vegetables intended for ready-to-eat products are essential.


Subject(s)
Escherichia coli Infections , Escherichia coli , Male , Humans , Female , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Escherichia coli Infections/diagnosis , Escherichia coli Infections/epidemiology , Onions , Vegetables , Disease Outbreaks , Denmark/epidemiology
3.
Epidemiol Infect ; 150: e138, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35899864

ABSTRACT

We aimed to descriptively analyse the possible impact of the national COVID-19 interventions on the incidence of common infectious diseases in Denmark during spring and summer 2020. This observational study focused on national register data on infections caused by 16 different bacterial and viral pathogens. We included new cases registered between 1 January 2016 and 31 July 2020. The weekly number of new cases were analysed with respect to the COVID-19-related interventions introduced during 2020. We found a marked decrease in infections associated with droplet transmission coinciding with the COVID-19 interventions in spring and summer 2020. These included decreases in both viral and bacterial airway infections and also decreases in invasive infections caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. There was also a reduction in cases associated with foodborne transmission during the COVID-19 lockdown period. We found no effect of the lockdown on infections by invasive beta-haemolytic streptococci group B, C and G, Staphylococcus aureus bacteraemia, Neisseria gonorrhoeae or Clostridioides difficile. In conclusion, we found that the widespread interventions such as physical distancing, less travel, hygiene measures and lockdown of schools, restaurants and workplaces together coincided with a marked decline in respiratory infections and, to a smaller extent, some foodborne-transmitted infections.


Subject(s)
Bacteremia , COVID-19 , Communicable Diseases , Staphylococcal Infections , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Denmark/epidemiology , Humans , Incidence , Staphylococcus aureus
4.
Euro Surveill ; 26(26)2021 07.
Article in English | MEDLINE | ID: mdl-34212839

ABSTRACT

We present a case of carbapenemase-producing blaNDM-1-positive Salmonella Kottbus in an 82-year-old Danish man. The blaNDM-1 was also identified in Escherichia coli and Citrobacter freundii in the same patient on the same 43 kb IncN2 plasmid, suggesting in vivo inter-species plasmid transfer. A NCBI BLAST analysis of the plasmid (pAMA003584_NDM-1) identified 12 highly similar plasmids, all originating from east and south-east Asia. This case could be the first confirmed case of blaNDM-1-positive Salmonella not related to travel outside Europe.


Subject(s)
Anti-Bacterial Agents , beta-Lactamases , Aged, 80 and over , Denmark , Humans , Male , Microbial Sensitivity Tests , Plasmids , Salmonella/genetics , beta-Lactamases/genetics
5.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31732576

ABSTRACT

Salmonella enterica serovar Dublin is a cattle-adapted S. enterica serovar causing both intestinal and systemic infection in its bovine host, and it is also a serious threat to human health. The present study aimed to determine the population structure of S Dublin isolates obtained from Danish cattle herds and to investigate how cattle isolates relate to Danish human isolates, as well as to non-Danish human and bovine isolates. Phylogenetic analysis of 197 Danish cattle isolates from 1996 to 2016 identified three major clades corresponding to distinct geographical regions of cattle herds. Persistence of closely related isolates within the same herd and their circulation between epidemiologically linked herds for a period of more than 20 years were demonstrated. These findings suggest that a lack of internal biosecurity and, to some extent, also a lack of external biosecurity in the herds have played an important role in the long-term persistence of S Dublin in Danish cattle herds in the period investigated. Global population analysis revealed that Danish cattle isolates clustered separately from bovine isolates from other countries, whereas human isolates were geographically spread. Resistance genes were not commonly demonstrated in Danish bovine isolates; only the isolates within one Danish clade were found to often harbor two plasmids of IncFII/IncFIB and IncN types, the latter plasmid carrying blaTEM-1, tetA, strA, and strB antibiotic resistance genes.IMPORTANCES Dublin causes economic losses in cattle production, and the bacterium is a public health concern. A surveillance and control program has been in place in Denmark since 2002 with the ultimate goal to eradicate S Dublin from Danish cattle herds; however, a small proportion of herds have remained positive for many years. In this study, we demonstrate that herds with persistent infection often were infected with the same strain for many years, indicating that internal biosecurity has to be improved to curb the infection. Further, domestic cases of S Dublin infection in humans were found to be caused both by Danish cattle isolates and by isolates acquired abroad. This study shows the strength of whole-genome sequencing to obtain detailed information on epidemiology of S Dublin and allows us to suggest internal biosecurity as a main way to control this bacterium in Danish cattle herds.


Subject(s)
Cattle Diseases/epidemiology , Salmonella Infections, Animal/epidemiology , Salmonella Infections/epidemiology , Salmonella enterica/isolation & purification , Animals , Cattle , Cattle Diseases/microbiology , Denmark/epidemiology , Humans , Phylogeny , Prevalence , Retrospective Studies , Salmonella Infections/microbiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/classification , Serogroup , Whole Genome Sequencing/veterinary
6.
BMC Genomics ; 20(1): 870, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730461

ABSTRACT

BACKGROUND: Salmonella Infantis (S. Infantis) is one of the most frequent Salmonella serovars isolated from human cases of salmonellosis and the most detected serovar from animal and food sources in Europe. The serovar is commonly associated with poultry and there is increasing concern over multidrug resistant clones spreading worldwide, as the dominating clones are characterized by presence of large plasmids carrying multiple resistance genes. Increasing the knowledge of the S. Infantis population and evolution is important for understanding and preventing further spread. In this study, we analysed a collection of strains representing different decades, sources and geographic locations. We analysed the population structure and the accessory genome, in particular we identified prophages with a view to understand the role of prophages in relation to the evolution of this serovar. RESULTS: We sequenced a global collection of 100 S. Infantis strains. A core-genome SNP analysis separated five strains in e-Burst Group (eBG) 297 with a long branch. The remaining strains, all in eBG31, were divided into three lineages that were estimated to have separated approximately 150 years ago. One lineage contained the vast majority of strains. In five of six clusters, no obvious correlation with source or geographical locations was seen. However, one cluster contained mostly strains from human and avian sources, indicating a clone with preference for these sources. The majority of strains within this cluster harboured a pESI-like plasmid with multiple resistance genes. Another lineage contained three genetic clusters with more rarely isolated strains of mainly animal origin, possibly less sampled or less infectious clones. Conserved prophages were identified in all strains, likely representing bacteriophages which integrated into the chromosome of a common ancestor to S. Infantis. We also saw that some prophages were specific to clusters and were probably introduced when the clusters were formed. CONCLUSIONS: This study analysed a global S. Infantis population and described its genetic structure. We hypothesize that the population has evolved in three separate lineages, with one more successfully emerging lineage. We furthermore detected conserved prophages present in the entire population and cluster specific prophages, which probably shaped the population structure.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Phylogeny , Polymorphism, Single Nucleotide , Salmonella enterica/genetics , Animals , Anti-Bacterial Agents/pharmacology , Asia/epidemiology , Chickens , Europe/epidemiology , Humans , Multigene Family , Phylogeography , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Prophages , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/classification , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , United States/epidemiology , Whole Genome Sequencing
7.
Euro Surveill ; 24(24)2019 06.
Article in English | MEDLINE | ID: mdl-31213223

ABSTRACT

In April 2019, a cross-border outbreak of Yersinia entercolitica O3 was identified in Sweden and Denmark and confirmed using whole genome sequencing. Close cross-border collaboration with representatives from human and food authorities helped direct resources and investigations. Combined epidemiological and trace-back investigations pointed to imported fresh spinach as the outbreak vehicle and highlight that other vehicles of Y. enterocolitica outbreaks than pork should be considered.


Subject(s)
Disease Outbreaks , Emigration and Immigration , Spinacia oleracea/microbiology , Yersinia Infections/epidemiology , Yersinia Infections/genetics , Yersinia enterocolitica/genetics , Adolescent , Adult , Aged , Case-Control Studies , Child , Child, Preschool , Denmark/epidemiology , Disease Outbreaks/prevention & control , Female , Humans , Male , Middle Aged , Sweden/epidemiology , Whole Genome Sequencing/methods , Yersinia Infections/diagnosis , Yersinia enterocolitica/isolation & purification , Young Adult
8.
Emerg Infect Dis ; 23(10): 1631-1639, 2017 10.
Article in English | MEDLINE | ID: mdl-28930002

ABSTRACT

Whole-genome sequencing is rapidly replacing current molecular typing methods for surveillance purposes. Our study evaluates core-genome single-nucleotide polymorphism analysis for outbreak detection and linking of sources of Salmonella enterica serovar Typhimurium and its monophasic variants during a 7-month surveillance period in Denmark. We reanalyzed and defined 8 previously characterized outbreaks from the phylogenetic relatedness of the isolates, epidemiologic data, and food traceback investigations. All outbreaks were identified, and we were able to exclude unrelated and include additional related human cases. We were furthermore able to link possible food and veterinary sources to the outbreaks. Isolates clustered according to sequence types (STs) 19, 34, and 36. Our study shows that core-genome single-nucleotide polymorphism analysis is suitable for surveillance and outbreak investigation for Salmonella Typhimurium (ST19 and ST36), but whole genome-wide analysis may be required for the tight genetic clone of monophasic variants (ST34).


Subject(s)
DNA, Bacterial/genetics , Disease Outbreaks , Meat/microbiology , Salmonella Infections/epidemiology , Salmonella typhimurium/classification , Whole Genome Sequencing , Animals , Cattle , Denmark/epidemiology , Epidemiological Monitoring , Food Microbiology , Humans , Molecular Epidemiology , Phylogeny , Polymorphism, Single Nucleotide , Salmonella Infections/diagnosis , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Serogroup , Swine
9.
Euro Surveill ; 22(31)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28797325

ABSTRACT

This report describes one Salmonella isolate harbouring both mcr-1 and mcr-3. We also found nine other Salmonella isolates positive for the plasmid-borne colistin resistance gene, mcr-3. The strains were isolated from patients in Denmark between 2009 and 2017 and five of the patients had travelled to Asia. In addition to mcr-3, all strains were found positive for blaTEM-1, strA, strB, sul2 and tet(A) or tet(B), and most strains were positive for blaCTX-M-55 and qnrS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/isolation & purification , Meat/microbiology , Plasmids/genetics , Salmonella/drug effects , Animals , Escherichia coli/genetics , Humans , Microbial Sensitivity Tests , Salmonella/genetics , Salmonella/isolation & purification
10.
Euro Surveill ; 22(9)2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28277220

ABSTRACT

Multilocus variable-number tandem repeat analysis (MLVA) is a rapid and reproducible typing method that is an important tool for investigation, as well as detection, of national and multinational outbreaks of a range of food-borne pathogens. Salmonella enterica serovar Enteritidis is the most common Salmonella serovar associated with human salmonellosis in the European Union/European Economic Area and North America. Fourteen laboratories from 13 countries in Europe and North America participated in a validation study for MLVA of S. Enteritidis targeting five loci. Following normalisation of fragment sizes using a set of reference strains, a blinded set of 24 strains with known allele sizes was analysed by each participant. The S. Enteritidis 5-loci MLVA protocol was shown to produce internationally comparable results as more than 90% of the participants reported less than 5% discrepant MLVA profiles. All 14 participating laboratories performed well, even those where experience with this typing method was limited. The raw fragment length data were consistent throughout, and the inter-laboratory validation helped to standardise the conversion of raw data to repeat numbers with at least two countries updating their internal procedures. However, differences in assigned MLVA profiles remain between well-established protocols and should be taken into account when exchanging data.


Subject(s)
Laboratories/statistics & numerical data , Molecular Typing/methods , Multilocus Sequence Typing/methods , Salmonella Infections/microbiology , Salmonella enteritidis/genetics , Salmonella enteritidis/isolation & purification , Tandem Repeat Sequences/genetics , China/epidemiology , Disease Outbreaks , Epidemiologic Studies , Europe/epidemiology , Humans , Minisatellite Repeats , Multilocus Sequence Typing/instrumentation , Multilocus Sequence Typing/standards , Phylogeny , Predictive Value of Tests , Public Health Surveillance/methods , Reproducibility of Results , Salmonella Food Poisoning/epidemiology , Salmonella Infections/epidemiology , Salmonella enteritidis/classification
11.
Euro Surveill ; 22(7)2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28230522

ABSTRACT

Between 2014 and 2015, the European Centre for Disease Prevention and Control was informed of an increase in numbers of Salmonella enterica serotype Chester cases with travel to Morocco occurring in six European countries. Epidemiological and microbiological investigations were conducted. In addition to gathering information on the characteristics of cases from the different countries in 2014, the epidemiological investigation comprised a matched case-case study involving French patients with salmonellosis who travelled to Morocco that year. A univariate conditional logistic regression was performed to quantify associations. The microbiological study included a whole genome sequencing (WGS) analysis of clinical and non-human isolates of S. Chester of varied place and year of isolation. A total of 162 cases, mostly from France, followed by Belgium, the Netherlands, Spain, Denmark and Sweden were reported, including 86 (53%) women. The median age per country ranged from 3 to 38 years. Cases of S. Chester were more likely to have eaten in a restaurant and visited the coast of Morocco. The results of WGS showed five multilocus sequence types (ST), with 96 of 153 isolates analysed clustering into a tight group that corresponded to a novel ST, ST1954. Of these 96 isolates, 46 (48%) were derived from food or patients returning from Morocco and carried two types of plasmids containing either qnrS1 or qnrB19 genes. This European-wide outbreak associated with travel to Morocco was likely a multi-source outbreak with several food vehicles contaminated by multidrug-resistant S. Chester strains.


Subject(s)
Disease Outbreaks , Salmonella Food Poisoning/epidemiology , Salmonella Infections/epidemiology , Salmonella enterica/isolation & purification , Travel , Adolescent , Adult , Child , Child, Preschool , Europe/epidemiology , Female , Humans , Logistic Models , Male , Microbial Sensitivity Tests , Middle Aged , Morocco , Multilocus Sequence Typing , Phylogeny , Plasmids , Salmonella Food Poisoning/microbiology , Salmonella Infections/diagnosis , Salmonella Infections/microbiology , Salmonella enterica/classification , Salmonella enterica/genetics , Serogroup , Young Adult
12.
Risk Anal ; 36(3): 571-88, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27002674

ABSTRACT

Salmonella is an important cause of bacterial foodborne infections in Denmark. To identify the main animal-food sources of human salmonellosis, risk managers have relied on a routine application of a microbial subtyping-based source attribution model since 1995. In 2013, multiple locus variable number tandem repeat analysis (MLVA) substituted phage typing as the subtyping method for surveillance of S. Enteritidis and S. Typhimurium isolated from animals, food, and humans in Denmark. The purpose of this study was to develop a modeling approach applying a combination of serovars, MLVA types, and antibiotic resistance profiles for the Salmonella source attribution, and assess the utility of the results for the food safety decisionmakers. Full and simplified MLVA schemes from surveillance data were tested, and model fit and consistency of results were assessed using statistical measures. We conclude that loci schemes STTR5/STTR10/STTR3 for S. Typhimurium and SE9/SE5/SE2/SE1/SE3 for S. Enteritidis can be used in microbial subtyping-based source attribution models. Based on the results, we discuss that an adjustment of the discriminatory level of the subtyping method applied often will be required to fit the purpose of the study and the available data. The issues discussed are also considered highly relevant when applying, e.g., extended multi-locus sequence typing or next-generation sequencing techniques.


Subject(s)
Multilocus Sequence Typing/methods , Salmonella Food Poisoning/diagnosis , Salmonella Food Poisoning/microbiology , Salmonella enteritidis/isolation & purification , Salmonella typhimurium/isolation & purification , Animals , Artifacts , Bacteriophage Typing , Chickens , Denmark , Disease Outbreaks , Ducks , Food Safety , Humans , Meat , Minisatellite Repeats , Models, Statistical , Salmonella Infections , Swine , Turkeys
13.
Euro Surveill ; 21(50)2016 Dec 15.
Article in English | MEDLINE | ID: mdl-28006653

ABSTRACT

In 2012, the European Centre for Disease Prevention and Control (ECDC) initiated external quality assessment (EQA) schemes for molecular typing including the National Public Health Reference Laboratories in Europe. The overall aim for these EQA schemes was to enhance the European surveillance of food-borne pathogens by evaluating and improving the quality and comparability of molecular typing. The EQAs were organised by Statens Serum Institut (SSI) and included Salmonella enterica subsp. enterica, verocytotoxin-producing Escherichia coli (VTEC) and Listeria monocytogenes. Inter-laboratory comparable pulsed-field gel electrophoresis (PFGE) images were obtained from 10 of 17 of the participating laboratories for Listeria, 15 of 25 for Salmonella, but only nine of 20 for VTEC. Most problems were related to PFGE running conditions and/or incorrect use of image acquisition. Analysis of the gels was done in good accordance with the provided guidelines. Furthermore, we assessed the multilocus variable-number tandem repeat analysis (MLVA) scheme for S. Typhimurium. Of 15 laboratories, nine submitted correct results for all analysed strains, and four had difficulties with one strain only. In conclusion, both PFGE and MLVA are prone to variation in quality, and there is therefore a continuous need for standardisation and validation of laboratory performance for molecular typing methods of food-borne pathogens in the human public health sector.


Subject(s)
Electrophoresis, Gel, Pulsed-Field/standards , Escherichia coli/genetics , Foodborne Diseases/microbiology , Laboratories , Listeria monocytogenes/genetics , Molecular Typing/standards , Salmonella enterica/genetics , DNA, Bacterial/analysis , Epidemiologic Studies , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Europe , Humans , Listeria monocytogenes/isolation & purification , Listeriosis/microbiology , Minisatellite Repeats , Molecular Typing/methods , Salmonella Infections/microbiology , Salmonella enterica/isolation & purification
14.
J Clin Microbiol ; 53(11): 3411-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26292292

ABSTRACT

Fluoroquinolones (FQs) are among the drugs of choice for treatment of Salmonella infections. However, fluoroquinolone resistance is increasing in Salmonella due to chromosomal mutations in the quinolone resistance-determining regions (QRDRs) of the topoisomerase genes gyrA, gyrB, parC, and parE and/or plasmid-mediated quinolone resistance (PMQR) mechanisms including qnr variants, aac(6')-Ib-cr, qepA, and oqxAB. Some of these mutations cause only subtle increases in the MIC, i.e., MICs ranging from 0.12 to 0.25 mg/liter for ciprofloxacin (just above the wild-type MIC of ≤0.06 mg/liter). These isolates are difficult to detect with standard ciprofloxacin disk diffusion, and plasmid-mediated resistance, such as qnr, is often not detected by the nalidixic acid screen test. We evaluated 16 quinolone/fluoroquinolone disks for their ability to detect low-level-resistant Salmonella enterica isolates that are not serotype Typhi. A total of 153 Salmonella isolates characterized for the presence (n = 104) or absence (n = 49) of gyrA and/or parC topoisomerase mutations, qnrA, qnrB, qnrD, qnrS, aac(6')-Ib-cr, or qepA genes were investigated. All isolates were MIC tested by broth microdilution against ciprofloxacin, levofloxacin, and ofloxacin and by disk diffusion using EUCAST or CLSI methodology. MIC determination correctly categorized all isolates as either wild-type isolates (MIC of ≤0.06 mg/liter and absence of resistance genes) or non-wild-type isolates (MIC of >0.06 mg/liter and presence of a resistance gene). Disk diffusion using these antibiotics and nalidixic acid failed to detect some low-level-resistant isolates, whereas the 5-µg pefloxacin disk correctly identified all resistant isolates. However, pefloxacin will not detect isolates having aac(6')-Ib-cr as the only resistance determinant. The pefloxacin disk assay was approved and implemented by EUCAST (in 2014) and CLSI (in 2015).


Subject(s)
Anti-Bacterial Agents/pharmacology , Disk Diffusion Antimicrobial Tests/methods , Drug Resistance, Multiple, Bacterial/genetics , Pefloxacin/pharmacology , Salmonella Infections/drug therapy , Salmonella enterica/drug effects , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Base Sequence , Ciprofloxacin/therapeutic use , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , DNA, Bacterial/genetics , Humans , Levofloxacin/pharmacology , Nalidixic Acid/pharmacology , Ofloxacin/pharmacology , Salmonella Infections/microbiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Sequence Analysis, DNA
15.
Microbiol Spectr ; 12(1): e0341823, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38063356

ABSTRACT

IMPORTANCE: This study is important because it shows the potential epidemiological silence associated with the use of culture as the primary diagnostic method for the laboratory identification of human campylobacteriosis. Also, we show how polymerase chain reaction methods are associated with a systematic increase in the number of human campylobacteriosis episodes as reported by routine disease surveillance. These findings are operationally relevant and have public health implications because they tell how crucial it is to consider changes in diagnostic methods, e.g., in the epidemiological analysis of historical data and in the interpretation of future data in light of the past. We also believe that this study highlights how the synergy between microbiology and epidemiology is essential for disease surveillance.


Subject(s)
Campylobacter Infections , Campylobacter , Gastroenteritis , Humans , Campylobacter Infections/diagnosis , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Retrospective Studies , Campylobacter/genetics , Denmark/epidemiology , Polymerase Chain Reaction
16.
Int J Food Microbiol ; 421: 110790, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878707

ABSTRACT

The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3″)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Sus scrofa , Animals , Italy , Sus scrofa/microbiology , Swine , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Anti-Bacterial Agents/pharmacology , Escherichia/genetics , Escherichia/isolation & purification , Escherichia/drug effects , Escherichia/pathogenicity , Swine Diseases/microbiology , Swine Diseases/epidemiology , Microbial Sensitivity Tests , Virulence/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Whole Genome Sequencing
17.
Foods ; 13(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38201093

ABSTRACT

The objective of this investigation was to evaluate Salmonella and Yersinia enterocolitica prevalence in wild boars hunted in Sardinia and further characterize the isolates and analyse antimicrobial resistance (AMR) patterns. In order to assess slaughtering hygiene, an evaluation of carcasses microbial contamination was also carried out. Between 2020 and 2022, samples were collected from 66 wild boars hunted during two hunting seasons from the area of two provinces in northern and central Sardinia (Italy). Samples collected included colon content samples, mesenteric lymph nodes samples and carcass surface samples. Salmonella and Y. enterocolitica detection was conducted on each sample; also, on carcass surface samples, total aerobic mesophilic count and Enterobacteriaceae count were evaluated. On Salmonella and Y. enterocolitica isolates, antimicrobial susceptibility was tested and whole genome sequencing was applied. Salmonella was identified in the colon content samples of 3/66 (4.5%) wild boars; isolates were S. enterica subs. salamae, S. ser. elomrane and S. enterica subs. enterica. Y. enterocolitica was detected from 20/66 (30.3%) wild boars: in 18/66 (27.3%) colon contents, in 3/66 (4.5%) mesenteric lymph nodes and in 3/49 (6.1%) carcass surface samples. In all, 24 Y. enterocolitica isolates were analysed and 20 different sequence types were detected, with the most common being ST860. Regarding AMR, no resistance was detected in Salmonella isolates, while expected resistance towards ß-lactams (blaA gene) and streptogramin (vatF gene) was observed in Y. enterocolitica isolates (91.7% and 4.2%, respectively). The low presence of AMR is probably due to the low anthropic impact in the wild areas. Regarding the surface contamination of carcasses, values (mean ± standard deviation log10 CFU/cm2) were 2.46 ± 0.97 for ACC and 1.07 ± 1.18 for Enterobacteriaceae. The results of our study confirm that wild boars can serve as reservoirs and spreaders of Salmonella and Y. enterocolitica; the finding of Y. enterocolitica presence on carcass surface highlights how meat may become superficially contaminated, especially considering that contamination is linked to the conditions related to the hunting, handling and processing of game animals.

18.
Front Public Health ; 11: 1129083, 2023.
Article in English | MEDLINE | ID: mdl-36969662

ABSTRACT

Introduction: Several Proficiency Test (PT) or External Quality Assessment (EQA) schemes are currently available for assessing the ability of laboratories to detect and characterize enteropathogenic bacteria, but they are usually targeting one sector, covering either public health, food safety or animal health. In addition to sector-specific PTs/EQAs for detection, cross-sectoral panels would be useful for assessment of the capacity to detect and characterize foodborne pathogens in a One Health (OH) perspective and further improving food safety and interpretation of cross-sectoral surveillance data. The aims of the study were to assess the cross-sectoral capability of European public health, animal health and food safety laboratories to detect, characterize and notify findings of the foodborne pathogens Campylobacter spp., Salmonella spp. and Yersinia enterocolitica, and to develop recommendations for future cross-sectoral PTs and EQAs within OH. The PT/EQA scheme developed within this study consisted of a test panel of five samples, designed to represent a theoretical outbreak scenario. Methods: A total of 15 laboratories from animal health, public health and food safety sectors were enrolled in eight countries: Denmark, France, Italy, the Netherlands, Poland, Spain, Sweden, and the United Kingdom. The laboratories analyzed the samples according to the methods used in the laboratory and reported the target organisms at species level, and if applicable, serovar for Salmonella and bioserotype for Yersinia. Results: All 15 laboratories analyzed the samples for Salmonella, 13 for Campylobacter and 11 for Yersinia. Analytical errors were predominately false negative results. One sample (S. Stockholm and Y. enterocolitica O:3/BT4) with lower concentrations of target organisms was especially challenging, resulting in six out of seven false negative results. These findings were associated with laboratories using smaller sample sizes and not using enrichment methods. Detection of Salmonella was most commonly mandatory to notify within the three sectors in the eight countries participating in the pilot whereas findings of Campylobacter and Y. enterocolitica were notifiable from human samples, but less commonly from animal and food samples. Discussion: The results of the pilot PT/EQA conducted in this study confirmed the possibility to apply a cross-sectoral approach for assessment of the joint OH capacity to detect and characterize foodborne pathogens.


Subject(s)
Campylobacter , One Health , Yersinia enterocolitica , Animals , Humans , Salmonella , Laboratories
19.
Nat Commun ; 14(1): 3517, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316492

ABSTRACT

Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries. The evolution and geographical distribution of S. Concord remained unclear. Here, we provide a genomic overview of the population structure and antimicrobial resistance (AMR) of S. Concord by analysing genomes from 284 historical and contemporary isolates obtained between 1944 and 2022 across the globe. We demonstrate that S. Concord is a polyphyletic serovar distributed among three Salmonella super-lineages. Super-lineage A is composed of eight S. Concord lineages, of which four are associated with multiple countries and low levels of AMR. Other lineages are restricted to Ethiopia and horizontally acquired resistance to most antimicrobials used for treating invasive Salmonella infections in low- and middle-income countries. By reconstructing complete genomes for 10 representative strains, we demonstrate the presence of AMR markers integrated in structurally diverse IncHI2 and IncA/C2 plasmids, and/or the chromosome. Molecular surveillance of pathogens such as S. Concord supports the understanding of AMR and the multi-sector response to the global AMR threat. This study provides a comprehensive baseline data set essential for future molecular surveillance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Ethiopia/epidemiology , Genomics , Salmonella/genetics
20.
Foodborne Pathog Dis ; 9(4): 367-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22300222

ABSTRACT

The objective of this research was to determine minimal inhibitory concentration (MIC) population distributions for colistin for Salmonella on subtype level. Furthermore, we wanted to determine if differences in MIC for colistin could be explained by mutations in pmrA or pmrB encoding proteins involved in processes that influence the binding of colistin to the cell membrane. During 2008-2011, 6,583 Salmonella enterica subsp. enterica isolates of human origin and 1931 isolates of animal/meat origin were collected. The isolates were serotyped, and susceptibility was tested towards colistin (range 1-16 mg/L). Moreover, 37 isolates were tested for mutations in pmrA and pmrB by polymerase chain reaction (PCR) and DNA sequencing. MIC distribution for colistin at serotype level showed that Salmonella Dublin (n=198) followed by Salmonella Enteritidis (n=1247) were less susceptible than "other" Salmonella serotypes originating from humans (n=5,274) and Salmonella Typhimurium of animal/meat origin (n=1794). MIC was ≤1 mg/L for 98.9% of "other" Salmonella serotypes originating from humans, 99.4% of Salmonella Typhimurium, 61.3% of Salmonella Enteritidis, and 12.1% of Salmonella Dublin isolates. Interestingly, Salmonella Dublin and Salmonella Enteritidis belong to the same O-group (O:1, 9,12), suggesting that surface lipopolysaccharides (LPS) of the cell (O-antigen) play a role in colistin susceptibility. The epidemiological cut-off value of >2 mg/L for colistin suggested by European Committee on Antimicrobial Susceptibility Testing (EUCAST) is placed inside the distribution for both Salmonella Dublin and Salmonella Enteritidis. All tested Salmonella Dublin isolates, regardless of MIC colistin value, had identical pmrA and pmrB sequences. Missense mutations were found only in pmrA in one Salmonella Reading and in pmrB in one Salmonella Concord isolate, both with MIC of ≤1 for colistin. In conclusion, our study indicates that missense mutations are not necessarily involved in increased MICs for colistin. Increased MICs for colistin seemed to be linked to specific serotypes (Salmonella Dublin and Salmonella Enteritidis). We recommend that Salmonella with MIC of >2 mg/L for colistin be evaluated on the serovar level.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , Salmonella Infections/microbiology , Salmonella/drug effects , Transcription Factors/genetics , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Mutation , Salmonella/classification , Salmonella/genetics , Salmonella enteritidis/classification , Salmonella enteritidis/drug effects , Salmonella enteritidis/genetics , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Sequence Analysis, DNA , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL