Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Microsurgery ; 44(1): e31048, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37042799

ABSTRACT

BACKGROUND: Lesions of the distal phalanges of the fingers frequently involve the nail bed. There are few therapeutic options for nail-bed reconstruction and they often lead to painful scars and onychodystrophy. We present our experience with the distal adipofascial laterodigital reverse flap. METHODS: Fifteen patients (average age 46.33 years, range 28-73) with tumors or traumatic injuries (crush injuries, nail avulsion, and partial fingertip amputations) of the nail bed, underwent digital reconstruction through the distal adipofascial laterodigital reverse flap from June 2018 to August 2019. The size of the fingertip defect covered with the flap was ranged between 1.1 × 1.1 and 1.6 × 1.2 cm (average size 1.4 × 1.2 cm). The flap was harvested enrolling subcutaneous tissue from the lateral aspect of the middle and distal phalanx from the less damaged side. RESULTS: The average size of the harvested flaps was 1.3 × 1.2 cm (range 1.1 × 1.0 to 1.4 × 1.1 cm). All adipofascial flaps survived entirely and the nail bed healed in all patients, with an average healing time of 21 days and a subsequent regrowth of the nail. The follow up ranged from 6 to 12 months, with a mean of 7 months. CONCLUSIONS: The distal reverse adipofascial flap provides a very versatile and reliable coverage of the distal finger and its nail bed. It is a rapid and reproducible surgical procedure with poor morbidity for the donor site. LEVEL OF EVIDENCE: IV.


Subject(s)
Finger Injuries , Plastic Surgery Procedures , Humans , Adult , Middle Aged , Aged , Finger Injuries/surgery , Surgical Flaps/surgery , Skin Transplantation/methods , Fingers/surgery
2.
Sensors (Basel) ; 24(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257630

ABSTRACT

Bite force measurements are crucial in the realm of biomedical research, particularly in the areas of dentistry and orthodontic care. Various intraoral devices have been used to assess biting force, but each has limitations and drawbacks. Fiber optic sensors (FOSs) offer advantages such as electrical inertness, immunity to electromagnetic interference, and high sensitivity. Distributed fiber optic sensing allows an increase in the number of sensing points and can interrogate numerous reflections from scattering events within an optical fiber. We present four dental bites with heights of 6 mm, which enabled bilateral measurements. U-shaped sensors were prepared by embedding fibers into silicone by folding a single-mode fiber into four lines and multiplexing eight parallel nanoparticle-doped fibers. Dental bite models were created using two silicone materials (Sorta Clear 18 and Sorta Clear 40). The developed sensors were calibrated by applying weights up to 900 g, resulting in a linear response. Experiments were conducted to compare the efficacy of the dental bites. The collection of massive data was enabled by constructing a 2D map of the dental bites during multi-point sensing.

3.
Sensors (Basel) ; 24(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38544254

ABSTRACT

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Biomarkers, Tumor , Biosensing Techniques/methods , Fiber Optic Technology/methods , Optical Fibers , Proteins , Neoplasms/diagnosis , Hyaluronan Receptors
4.
Microsurgery ; 43(8): 837-841, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37712433

ABSTRACT

Reconstruction of osseous defects of the distal phalanx of the thumb is usually addressed with free bone grafts or free vascularized bone flaps. Some reports demonstrated the possibility to harvest an osteo-cutaneous flap in the dorso-ulnar side of the first metacarpal bone with success. In the same manner, no reports are present in the literature in which bone deficits were reconstructed with this flap elevated as an exclusively osseous flap. We report our successful experience with one case of distal phalanx reconstruction of the thumb by mean of the dorso-ulnar reverse flow pedicled osseous flap. The patient was a 45-year-old woman with symptoms related to a cystic bone tumor that involved the entirety of the distal phalanx of the thumb. Flap dimensions were calculated based on x-ray gap measures, which resulted in need of 1.5 × 0.8 × 0.5 cm flap dimensions. An osseous flap was harvested and transposed from the ulnar side of the first metacarpal bone. K-wire fixation was utilized for bone flap stabilization. No complications occurred and excellent functional result was evaluated at 6 months follow-up. In our opinion, the flap may be considered as an alternative to free bone grafts in situations in which perilesional tissues may jeopardize the process of free graft taking and in cases in which free vascularized bone flaps are not feasible for patient or surgeon decision.


Subject(s)
Finger Phalanges , Plastic Surgery Procedures , Female , Humans , Middle Aged , Thumb/surgery , Surgical Flaps/surgery , Finger Phalanges/surgery , Bone Transplantation
5.
Sensors (Basel) ; 22(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35336430

ABSTRACT

This work presents an experimental investigation of the effect of chemical etching on the refractive index (RI) sensitivity of tilted fiber Bragg gratings (TFBGs). Hydrofluoric acid (HF) was used stepwise in order to reduce the optical fiber diameter from 125 µm to 13 µm. After each etching step, TFBGs were calibrated using two ranges of RI solutions: the first one with high RI variation (from 1.33679 RIU to 1.37078 RIU) and the second with low RI variation (from 1.34722 RIU to 1.34873 RIU). RI sensitivity was analyzed in terms of wavelength shift and intensity change of the grating resonances. The highest amplitude sensitivities obtained are 1008 dB/RIU for the high RI range and 8160 dB/RIU for the low RI range, corresponding to the unetched TFBG. The highest wavelength sensitivities are 38.8 nm/RIU for a fiber diameter of 100 µm for the high RI range, and 156 nm/RIU for a diameter of 40 µm for the small RI range. In addition, the effect of the etching process on the spectral intensity of the cladding modes, their wavelength separation and sensor linearity (R2) were studied as well. As a result, an optimization of the etching process is provided, so that the best trade-off between sensitivity, intensity level, and fiber thickness can be obtained.


Subject(s)
Optical Fibers , Refractometry
6.
Sensors (Basel) ; 22(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36433396

ABSTRACT

Fiber-optic sensors are a powerful tool to investigate physical properties like temperature, strain, and pressure. Such properties make these sensors interesting for many applications including biomedical applications. Fiber sensors are also a great platform for distributed sensing by using the principles of optical frequency domain reflectometry. Distributed sensing is becoming more and more used to achieve high-resolution measurements and to map physical properties of biomaterials at small scale, thus obtaining 2D and 3D mapping of a particular area of interest. This work aims at building and investigating a 2D sensing carpet based on a distributed fiber sensing technique, to map local pressure applied to the carpet. The two-dimensional mapping is obtained by embedding a single-mode optical fiber inside a soft silicone carpet. The fiber has been bent and arranged in a specific configuration characterized by several parallel lines. Different fiber fixation methods have been investigated by means of a comparative analysis to perform better characterization and to achieve a more precise response of the carpet. The best pressure sensitivity coefficient (0.373 pm/kPa or considering our setup 1.165 nm/kg) was detected when the fiber was fully embedded inside the silicone carpet. This paper demonstrates the possibility of mapping a 2D distributed pressure over a surface with a resolution of 2 mm by 2 mm. The surface of investigation is 2 cm by 6 cm, containing 310 sensing points. The sensing carpet has been validated selecting several preferential positions, by testing the consistency of the results over different portions of the carpet.


Subject(s)
Floors and Floorcoverings , Silicones , Optical Fibers , Fiber Optic Technology , Temperature
7.
Sensors (Basel) ; 21(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073669

ABSTRACT

In this work, we present a gold-coated shallow-tapered chirped fiber Bragg grating (stCFBG) for dual refractive index (RI) and temperature sensing. The stCFBG has been fabricated on a 15-mm long chirped FBG, by tapering a 7.29-mm region with a waist of 39 µm. The spectral analysis shows two distinct regions: a pre-taper region, in which the stCFBG is RI-independent and can be used to detect thermal changes, and a post-taper region, in which the reflectivity increases significantly when the RI increments. We estimate the RI and thermal sensitivities as 382.83 dB/RIU and 9.893 pm/°C, respectively. The cross-talk values are low (-1.54 × 10-3 dB/°C and 568.1 pm/RIU), which allows an almost ideal separation between RI and thermal characteristics. The stCFBG is a compact probe, suitable for long-term and temperature-compensated biosensing and detection of chemical analytes.

8.
Sensors (Basel) ; 21(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34695934

ABSTRACT

Optical fiber ball resonators based on single-mode fibers in the infrared range are an emerging technology for refractive index sensing and biosensing. These devices are easy and rapid to fabricate using a CO2 laser splicer and yield a very low finesse reflection spectrum with a quasi-random pattern. In addition, they can be functionalized for biosensing by using a thin-film sputtering method. A common problem of this type of device is that the spectral response is substantially unknown, and poorly correlated with the size and shape of the spherical device. In this work, we propose a detection method based on Karhunen-Loeve transform (KLT), applied to the undersampled spectrum measured by an optical backscatter reflectometer. We show that this method correctly detects the response of the ball resonator in any working condition, without prior knowledge of the sensor under interrogation. First, this method for refractive index sensing of a gold-coated resonator is applied, showing 1594 RIU-1 sensitivity; then, this concept is extended to a biofunctionalized ball resonator, detecting CD44 cancer biomarker concentration with a picomolar-level limit of detection (19.7 pM) and high specificity (30-41%).


Subject(s)
Biosensing Techniques , Neoplasms , Biomarkers, Tumor , Humans , Neoplasms/diagnosis , Optical Fibers , Refractometry
9.
Sensors (Basel) ; 21(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513666

ABSTRACT

Thermal ablation is achieved by delivering heat directly to tissue through a minimally invasive applicator. The therapy requires a temperature control between 50-100 °C since the mortality of the tumor is directly connected with the thermal dosimetry. Existing temperature monitoring techniques have limitations such as single-point monitoring, require costly equipment, and expose patients to X-ray radiation. Therefore, it is important to explore an alternative sensing solution, which can accurately monitor temperature over the whole ablated region. The work aims to propose a distributed fiber optic sensor as a potential candidate for this application due to the small size, high resolution, bio-compatibility, and temperature sensitivity of the optical fibers. The working principle is based on spatial multiplexing of optical fibers to achieve 3D temperature monitoring. The multiplexing is achieved by high-scattering, nanoparticle-doped fibers as sensing fibers, which are spatially separated by lower-scattering level of single-mode fibers. The setup, consisting of twelve sensing fibers, monitors tissue of 16 mm × 16 mm × 25 mm in size exposed to a gold nanoparticle-mediated microwave ablation. The results provide real-time 3D thermal maps of the whole ablated region with a high resolution. The setup allows for identification of the asymmetry in the temperature distribution over the tissue and adjustment of the applicator to follow the allowed temperature limits.


Subject(s)
Metal Nanoparticles , Optical Fibers , Animals , Gold , Humans , Liver , Magnesium Oxide , Swine , Temperature
10.
Sensors (Basel) ; 20(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143287

ABSTRACT

In this work, we introduced fabrication and interrogation of simple and highly sensitive fiber-optic refractive index (RI) sensors based on ball resonators built on the tip of single-mode fibers. The probes have been fabricated through a CO2 fiber splicer, with a fast (~600 s) and repeatable method. The ball resonator acted as a weak interferometer with a return loss below -50 dB and was interrogated with an optical backscatter reflectometer measuring the reflection spectrum. The ball resonators behaved as weak interferometers with a shallow fringe and a spectrum that appeared close to a random signal, and RI sensitivity could be measured either through wavelength shift or amplitude change. In this work, we reported four samples having sensitivity ranges 48.9-403.3 nm/RIU and 256.0-566.2 dB/RIU (RIU = refractive index unit). Ball resonators appeared as a sensitive and robust platform for RI sensing in liquid and can be further functionalized for biosensing.

11.
Sensors (Basel) ; 20(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370219

ABSTRACT

Optical backscatter reflectometry (OBR) is a method for the interrogation of Rayleigh scattering occurring in each section of an optical fiber, resulting in a single-fiber-distributed sensor with sub-millimeter spatial resolution. The use of high-scattering fibers, doped with MgO-based nanoparticles in the core section, provides a scattering increase which can overcome 40 dB. Using a configuration-labeled Scattering-Level Multiplexing (SLMux), we can arrange a network of high-scattering fibers to perform a simultaneous scan of multiple fiber sections, therefore extending the OBR method from a single fiber to multiple fibers. In this work, we analyze the performance and boundary limits of SLMux, drawing the limits of detection of N-channel SLMux, and evaluating the performance of scattering-enhancement methods in optical fibers.

12.
Sensors (Basel) ; 20(12)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560320

ABSTRACT

Wearable light textiles are gaining widespread interest in application for measurement and monitoring of biophysical parameters. Fiber optic sensors, in particular Bragg Grating (FBG) sensors, can be a competitive method for monitoring of respiratory behavior for chest and abdomen regions since the sensors are able to convert physical movement into wavelength shift. This study aims to show the performance of elastic belts with integrated optical fibers during the breathing activities done by two volunteers. Additionally, the work aims to determine how the positions of the volunteers affect the breathing pattern detected by optical fibers. As a reference, commercial mobile application for sensing vibration is used. The obtained results show that the FBGs are able to detect chest and abdomen movements during breathing and consequently reconstruct the breathing pattern. The accuracy of the results varies for two volunteers but remains consistent.


Subject(s)
Fiber Optic Technology , Monitoring, Physiologic/instrumentation , Respiratory Rate , Textiles , Female , Humans , Male , Young Adult
13.
Opt Express ; 27(16): 22074-22087, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510502

ABSTRACT

A novel approach for fiber optics 3D shape sensing, applicable to mini-invasive bio-medical devices, is presented. The approach exploits the optical backscatter reflectometry (OBR) and an innovative setup that permits the simultaneous spatial multiplexing of an optical fibers parallel. The result is achieved by means of a custom-made enhanced backscattering fiber whose core is doped with MgO-based nanoparticles (NP). This special NP-doped fiber presents a backscattering-level more than 40 dB higher with respect to a standard SMF-28. The fibers parallel is built to avoid overlap between NP-doped fibers belonging to different branches of the parallel, so that the OBR can distinguish the more intense backscattered signal coming from the NP-doped fiber. The system is tested by fixing, with epoxy glue, 4 NP-doped fibers along the length of an epidural needle. Each couple of opposite fibers senses the strain on a perpendicular direction. The needle is inserted in a custom-made phantom that simulates the spine anatomy. The 3D shape sensing is obtained by converting the measured strain in bending and shape deformation.

14.
Opt Express ; 26(14): 18708-18720, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30114044

ABSTRACT

In this work, a partially etched chirped fiber Bragg grating (pECFBG) is introduced, as a compact sensor for multi-parametric measurement of temperature, thermal gradients over the active length, and refractive index. The sensor is fabricated by wet-etching a portion of a 14-mm linearly chirped FBG with linear chirp profile. The resulting device has two active areas: the unetched part of the grating (2 mm) can be used either as a uniform temperature sensor, or to detect thermal gradients experienced through the grating length by means of a spectral reconstruction technique; the etched part (12 mm), besides having a similar thermal sensitivity, is exposed to refractive index sensing through the introduction of a sensitivity to external refractive index. Overall, the pECFBG structure behaves as a compact sensor with multi-parameter capability, that can both measure temperature and refractive index on the same grating, but also spatially resolve temperature detection through the grating section. The results have been validated through both a model and experimental setup, showing that the mutual correlation algorithm applied to different spectral parts of the grating is able to discriminate between uniform and gradient-shaped temperature profiles, and refractive index changes.

15.
Opt Lett ; 43(24): 5945-5948, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30547976

ABSTRACT

We demonstrate and experimentally validate a fiber optic refractive index (RI) sensor obtained by simply etching a high-scattering MgO-based nanoparticle-doped single-mode fiber in hydrofluoric acid (HF). The fiber has 32.3 dB stronger Rayleigh scattering than a standard fiber, allowing a detection of scattering spectral signatures with an optical backscatter reflectometer, even when the core is exposed to the outer RI. The obtained sensitivity is 1.53 nm/RIU (RI units), measured by correlating the scattering spectra. We prove the possibility of implementing a distributed RI detection (seven locations spaced by 1 mm). The fabrication method for this RI sensor is simplified, since it simply requires etching in an HF bath, without the need of inscribing reflective elements or fabricating microstructures in the fiber.

16.
Opt Lett ; 43(20): 5106-5109, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30320831

ABSTRACT

We demonstrate a largely tunable dispersion fiber Bragg grating (FBG) inscribed in a microstructured polymer optical fiber (mPOF). The bandwidth of the chirped FBG (CFBG) was achieved from 0.11 to 4.86 nm, which corresponds to a tunable dispersion range from 513.6 to 11.15 ps/nm. Furthermore, thermal sensitivity is used to compensate for the wavelength shift due to the applied strain. These results demonstrate that a CFBG in a POF is a promising technology for future optical systems.

17.
Sensors (Basel) ; 18(7)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973516

ABSTRACT

Fiber Bragg Gratings (FBGs) are one of the most popular technology within fiber-optic sensors, and they allow the measurement of mechanical, thermal, and physical parameters. In recent years, a strong emphasis has been placed on the fabrication and application of chirped FBGs (CFBGs), which are characterized by a non-uniform modulation of the refractive index within the core of an optical fiber. A CFBG behaves as a cascade of FBGs, each one reflecting a narrow spectrum that depends on temperature and/or strain. The key characteristic of CFBGs is that their reflection spectrum depends on the strain/temperature observed in each section of the grating; thus, they enable a short-length distributed sensing, whereas it is possible to detect spatially resolved variations of temperature or strain with resolution on the order of a millimeter over the grating length. Based on this premise, CFBGs have found important applications in healthcare, mechanical engineering, and shock waves analysis, among others. This work reviews the present and emerging trends in CFBG sensors, focusing on all aspects of the sensing element and outlining the application case scenarios for which CFBG sensors have been demonstrated.

18.
Sensors (Basel) ; 18(4)2018 04 17.
Article in English | MEDLINE | ID: mdl-29673158

ABSTRACT

The author wishes to make the following correction to this paper [1], and to replace Figure 2:[...].

19.
Sensors (Basel) ; 19(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583517

ABSTRACT

Etched fiber Bragg grating (EFBG)-based sensors are used as evanescent field sensors for refractive index detection. When the fiber thickness is thin and the refractive index sensitivity increases, the number of propagating modes increases, resulting in a spectral enlargement that complicates the interrogation of the sensor. In this work, we present a method to analyze the spectrum of a multimode etched fiber Bragg grating (MMEFBG) in the wavelet domain, which analyzes the amount of spectral density independently from the peak reflectivity value. The proposed interrogation method permits defining the integral of the spectral density as a novel and unconventional estimator. With respect to the conventional estimators based on wavelength shift, this estimator can better exploit the larger amount of information given by the spectral enlargement typical of multimode behavior. Results were obtained by etching an MMEFBG in hydrofluoric acid and using water/sucrose mixtures to evaluate the refractive index sensitivity, validating the interrogation method.

20.
Sensors (Basel) ; 18(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563228

ABSTRACT

A biosensor based on an etched Fiber Bragg Grating (EFBG) for thrombin detection is reported. The sensing system is based on a Fiber Bragg Grating (FBG) with a Bragg wavelength of 1550 nm, wet-etched in hydrofluoric acid (HF) for ~27 min, to achieve sensitivity to a refractive index (RI) of 17.4 nm/RIU (refractive index unit). Subsequently, in order to perform a selective detection of thrombin, the EFBG has been functionalized with silane-coupling agent 3-(aminopropyl)triethoxysilane (APTES) and a cross-linker, glutaraldehyde, for the immobilization of thrombin-binding aptamer. The biosensor has been validated for thrombin detection in concentrations ranging from 10 nM to 80 nM. The proposed sensor presents advantages with respect to other sensor configurations, based on plasmonic resonant tilted FBG or Long Period Grating (LPG), for thrombin detection. Firstly, fabricating an EFBG only requires chemical etching. Moreover, the functionalization method used in this study (silanization) allows the avoidance of complicated and expensive fabrications, such as thin film sputtering or chemical vapor deposition. Due to their characteristics, EFBG sensors are easier to multiplex and can be used in vivo. This opens new possibilities for the detection of thrombin in clinical settings.


Subject(s)
Aptamers, Nucleotide/analysis , Biosensing Techniques/methods , Optical Fibers , Calibration , Microscopy, Atomic Force , Refractometry
SELECTION OF CITATIONS
SEARCH DETAIL