ABSTRACT
In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.
Subject(s)
Cysteine Proteinase Inhibitors , Nitriles , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Cysteine Proteinase Inhibitors/chemistry , Malaria/drug therapy , Nitriles/therapeutic use , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapyABSTRACT
Rhodesain is the main cysteine protease of Trypanosoma brucei rhodesiense, the parasite causing the acute lethal form of Human African Trypanosomiasis. Starting from the dipeptide nitrile CD24, the further introduction of a fluorine atom in the meta position of the phenyl ring spanning in the P3 site and the switch of the P2 leucine with a phenylalanine led to CD34, a synthetic inhibitor that shows a nanomolar binding affinity towards rhodesain (Ki = 27 nM) and an improved target selectivity with respect to the parent dipeptide nitrile CD24. In the present work, following the Chou and Talalay method, we carried out a combination study of CD34 with curcumin, a nutraceutical obtained from Curcuma longa L. Starting from an affected fraction (fa) of rhodesain inhibition of 0.5 (i.e., the IC50), we observed an initial moderate synergistic action, which became a synergism for fa values ranging from 0.6 to 0.7 (i.e., 60-70% inhibition of the trypanosomal protease). Interestingly, at 80-90% inhibition of rhodesain proteolytic activity, we observed a strong synergism, resulting in 100% enzyme inhibition. Overall, in addition to the improved target selectivity of CD34 with respect to CD24, the combination of CD34 + curcumin resulted in an increased synergistic action with respect to CD24 + curcumin, thus suggesting that it is desirable to use CD34 and curcumin in combination.