Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biomed Mater Eng ; 27(1): 87-99, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27175470

ABSTRACT

Biocompatible metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Although metals and their alloys are widely and successfully used in producing biomedical implants due to their good mechanical properties and corrosion resistance, they have a lack in bioactivity. Therefore coating of the metal surface with calcium phosphates (CaP) is a benign way to achieve well bioactivity and get controlled corrosion properties. The biocompatibility and bioactivity calcium phosphates (CaP) in bone growth were guided them to biomedical treatment of bone defects and fractures. Many techniques have been used for fabrication of CaP coatings on metal substrates such as magnesium and titanium. The present review will focus on the synthesis of CaP and their relative forms using different techniques especially electrochemical techniques. The latter has always been known of its unique way of optimizing the process parameters that led to a control in the structure and characteristics of the produced materials.


Subject(s)
Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Coated Materials, Biocompatible/chemistry , Metals/chemistry , Animals , Biomimetics/methods , Bone Substitutes/chemical synthesis , Calcium Phosphates/chemical synthesis , Coated Materials, Biocompatible/chemical synthesis , Electrochemical Techniques/methods , Humans , Magnesium/chemistry , Metals/chemical synthesis , Orthopedics/methods , Prostheses and Implants , Surface Properties
2.
J Mater Sci Mater Med ; 19(9): 3153-60, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18437537

ABSTRACT

Composites comprised of calcium-deficient hydroxyapatite (HAp) and biodegradable polyphosphazenes were formed via cement-type reactions at physiologic temperature. The composite precursors were produced by blending particulate hydroxyapatite precursors with 10 wt% polymer using a solvent/non-solvent technique. HAp precursors having calcium-to-phosphate ratios of 1.5 (CDH) and 1.6 (CDS) were used. The polymeric constituents were poly[bis(ethyl alanato)phosphazene] (PNEA) and poly[(ethyl alanato)(1) (p-phenylphenoxy)(1) phosphazene] (PNEA(50)PhPh(50)). The effect of incorporating the phenyl phenoxy group was evaluated as a means of increasing the mechanical properties of the composites without retarding the rates of HAp formation. Reaction kinetics and mechanistic paths were characterized by pH determination, X-ray diffraction analyses, scanning electron microscopy, and infrared spectroscopy. The mechanical properties were analyzed by compression testing. These analyses indicated that the presence of the polymers slightly reduced the rate HAp formation. However, surface hydrolysis of polymer ester groups permitted the formation of calcium salt bridges that provide a mechanism for bonding with the HAp. The compressive strengths of the composites containing PNEA(50)PhPh(50) were superior to those containing PNEA, and were comparable to those of HAp produced in the absence of polymer. The current composites more closely match the structure of bone, and are thus strongly recommended to be used as bone cements where high loads are not expected.


Subject(s)
Aziridines/chemistry , Biocompatible Materials/chemistry , Calcium/chemistry , Durapatite/chemistry , Bone Cements , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Microscopy, Electron, Scanning/methods , Models, Chemical , Polymers/chemistry , Spectrophotometry, Infrared/methods , Surface Properties , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL