Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-32152087

ABSTRACT

Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host's microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only are pathogen-specific approaches not expected to induce resistance in nontargeted bacteria, but they are hypothesized to have minimal impact on the gut microbiome. Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their controls (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female, C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diversity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids in the fecal pellets from mice treated with pathogen-specific MAbs, was no different from that with animals treated with saline or an IgG control. Conversely, dramatic changes were observed in the relative abundance, as well as alpha and beta diversity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-treated mice. Taken together, these results indicate that pathogen-specific MAbs do not alter the fecal microbiome like broad-spectrum antibiotics and may represent a safer, more-targeted approach to antibacterial therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Bile Acids and Salts/metabolism , DNA, Bacterial/analysis , Fatty Acids/metabolism , Feces/microbiology , Female , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Specific Pathogen-Free Organisms
2.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: mdl-33087438

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children, resulting in annual epidemics worldwide. INFORM-RSV is a multiyear clinical study designed to describe the global molecular epidemiology of RSV in children under 5 years of age by monitoring temporal and geographical evolution of current circulating RSV strains, F protein antigenic sites, and their relationships with clinical features of RSV disease. During the pilot season (2017-2018), 410 RSV G-F gene sequences were obtained from 476 RSV-positive nasal samples collected from 8 countries (United Kingdom, Spain, The Netherlands, Finland, Japan, Brazil, South Africa, and Australia). RSV B (all BA9 genotype) predominated over RSV A (all ON1 genotype) globally (69.0% versus 31.0%) and in all countries except South Africa. Geographic clustering patterns highlighted wide transmission and continued evolution with viral spread. Most RSV strains were from infants of <1 year of age (81.2%), males (56.3%), and patients hospitalized for >24 h (70.5%), with no differences in subtype distribution. Compared to 2013 reference sequences, variations at F protein antigenic sites were observed for both RSV A and B strains, with high-frequency polymorphisms at antigenic site Ø (I206M/Q209R) and site V (L172Q/S173L/K191R) in RSV B strains. The INFORM-RSV 2017-2018 pilot season establishes an important molecular baseline of RSV strain distribution and sequence variability with which to track the emergence of new strains and provide an early warning system of neutralization escape variants that may impact transmission or the effectiveness of vaccines and MAbs under development.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Australia , Brazil , Child , Child, Preschool , Finland , Genotype , Humans , Infant , Japan , Male , Molecular Epidemiology , Netherlands , Phylogeny , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , South Africa , Spain , United Kingdom
3.
Respir Res ; 21(1): 77, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228581

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by frequent exacerbation phenotypes independent of disease stage. Increasing evidence shows that the microbiota plays a role in disease progression and severity, but long-term and international multicenter assessment of the variations in viral and bacterial communities as drivers of exacerbations are lacking. METHODS: Two-hundred severe COPD patients from Europe and North America were followed longitudinally for 3 years. We performed nucleic acid detection for 20 respiratory viruses and 16S ribosomal RNA gene sequencing to evaluate the bacterial microbiota in 1179 sputum samples collected at stable, acute exacerbation and follow-up visits. RESULTS: Similar viral and bacterial taxa were found in patients from the USA compared to Bulgaria and Czech Republic but their microbiome diversity was significantly different (P < 0.001) and did not impact exacerbation rates. Virus infection was strongly associated with exacerbation events (P < 5E-20). Human rhinovirus (13.1%), coronavirus (5.1%) and influenza virus (3.6%) constitute the top viral pathogens in triggering exacerbation. Moraxella and Haemophilus were 5-fold and 1.6-fold more likely to be the dominating microbiota during an exacerbation event. Presence of Proteobacteria such as Pseudomonas or Staphylococcus amongst others, were associated with exacerbation events (OR > 0.17; P < 0.02) but more strongly associated with exacerbation frequency (OR > 0.39; P < 4E-10), as confirmed by longitudinal variations and biotyping of the bacterial microbiota, and suggesting a role of the microbiota in sensitizing the lung. CONCLUSIONS: This study highlights bacterial taxa in lung sensitization and viral triggers in COPD exacerbations. It provides a global overview of the diverse targets for drug development and explores new microbiome analysis methods to guide future patient management applications.


Subject(s)
Bacteria/isolation & purification , Lung/microbiology , Lung/virology , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/virology , Viruses/isolation & purification , Aged , Aged, 80 and over , Bacteria/genetics , Bacterial Load , Disease Progression , Europe/epidemiology , Female , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Retrospective Studies , Risk Factors , Sputum/microbiology , Sputum/virology , Time Factors , United States/epidemiology , Viral Load , Viruses/genetics
4.
Microb Ecol ; 77(3): 808-820, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30141127

ABSTRACT

Chronic wounds are wounds that have failed to heal after 3 months of appropriate wound care. Previous reports have identified a diverse collection of bacteria in chronic wounds, and it has been postulated that bacterial profile may contribute to delayed healing. The purpose of this study was to perform a microbiome assessment of the Wound Healing and Etiology (WE-HEAL) Study cohort, including underlying comorbidities less commonly studied in the context of chronic wounds, such as autoimmune diseases, and investigate possible relationships of the wound microbiota with clinical healing trends. We examined chronic wound specimens from 60 patients collected through the WE-HEAL Study using 16S ribosomal RNA gene sequencing. A group of co-occurring obligate anaerobes was identified from taxonomic analysis guided by Dirichlet multinomial mixtures (DMM) modeling. The group includes members of the Gram-positive anaerobic cocci (GPAC) of the Clostridia class (i.e., Anaerococcus, Finegoldia, and Peptoniphilus) and additional strict anaerobes (i.e., Porphyromonas and Prevotella). We showed that the co-occurring group of obligate anaerobes not only co-exists with commonly identified wound species (such as Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas, Corynebacterium, and Streptococcus), but importantly, they could also predominate the wound microbiota. Furthermore, examination of clinical comorbidities of the WE-HEAL specimens showed that specific obligate and facultative anaerobes were significantly reduced in wounds presented with autoimmune disease. With respect to future healing trends, no association with the wound microbiome community or the abundance of individual wound species could be established. In conclusion, we identified a co-occurring obligate anaerobic community type that predominated some human chronic wounds and underrepresentation of anaerobes in wounds associated with autoimmune diseases. Possible elucidation of host environments or key factors that influence anaerobe colonization warrants further investigation in a larger cohort.


Subject(s)
Bacteria, Anaerobic/isolation & purification , Bacterial Infections/microbiology , Wounds and Injuries/microbiology , Adult , Aged , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacterial Infections/physiopathology , Chronic Disease , Female , Humans , Male , Middle Aged , Phylogeny , Wound Healing , Wounds and Injuries/physiopathology , Young Adult
5.
J Allergy Clin Immunol ; 142(5): 1447-1456.e9, 2018 11.
Article in English | MEDLINE | ID: mdl-29330010

ABSTRACT

BACKGROUND: Early life acute respiratory infection (ARI) with respiratory syncytial virus (RSV) has been strongly associated with the development of childhood wheezing illnesses, but the pathways underlying this association are poorly understood. OBJECTIVE: To examine the role of the nasopharyngeal microbiome in the development of childhood wheezing illnesses following RSV ARI in infancy. METHODS: We conducted a nested cohort study of 118 previously healthy, term infants with confirmed RSV ARI by RT-PCR. We used next-generation sequencing of the V4 region of the 16S ribosomal RNA gene to characterize the nasopharyngeal microbiome during RSV ARI. Our main outcome of interest was 2-year subsequent wheeze. RESULTS: Of the 118 infants, 113 (95.8%) had 2-year outcome data. Of these, 46 (40.7%) had parental report of subsequent wheeze. There was no association between the overall taxonomic composition, diversity, and richness of the nasopharyngeal microbiome during RSV ARI with the development of subsequent wheeze. However, the nasopharyngeal detection and abundance of Lactobacillus was consistently higher in infants who did not develop this outcome. Lactobacillus also ranked first among the different genera in a model distinguishing infants with and without subsequent wheeze. CONCLUSIONS: The nasopharyngeal detection and increased abundance of Lactobacillus during RSV ARI in infancy are associated with a reduced risk of childhood wheezing illnesses at age 2 years.


Subject(s)
Lactobacillus/isolation & purification , Nasopharynx/microbiology , Respiratory Sounds , Respiratory Syncytial Virus Infections/microbiology , Acute Disease , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Microbiota , RNA, Ribosomal, 16S/genetics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/immunology , Risk
6.
J Infect Dis ; 214(12): 1924-1928, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27923952

ABSTRACT

Respiratory viruses alter the nasopharyngeal microbiome and may be associated with a distinct microbial signature. To test this hypothesis, we compared the nasopharyngeal microbiome of 135 previously healthy infants with acute respiratory infection due to human rhinovirus (HRV; n = 52) or respiratory syncytial virus (RSV; n = 83). The nasopharyngeal microbiome was assessed by sequencing the V4 region of the 16S ribosomal RNA. Respiratory viruses were identified by quantitative reverse-transcription polymerase chain reaction. We found significant differences in the overall taxonomic composition and abundance of certain bacterial genera between infants infected with HRV and those infected with RSV. Our results suggest that respiratory tract viral infections are associated with different nasopharyngeal microbial profiles.


Subject(s)
Bacteria/classification , Bacteria/genetics , Microbiota , Nasopharynx/microbiology , Picornaviridae Infections/pathology , Respiratory Syncytial Virus Infections/complications , Respiratory Tract Infections/pathology , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Humans , Infant , Male , Prospective Studies , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
BMC Genomics ; 17(1): 635, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27527070

ABSTRACT

BACKGROUND: An estimated 15,000 children and adolescents under the age of 19 years are diagnosed with leukemia, lymphoma and other tumors in the USA every year. All children and adolescent acute leukemia patients will undergo chemotherapy as part of their treatment regimen. Fortunately, survival rates for most pediatric cancers have improved at a remarkable pace over the past three decades, and the overall survival rate is greater than 90 % today. However, significant differences in survival rate have been found in different age groups (94 % in 1-9.99 years, 82 % in ≥10 years and 76 % in ≥15 years). ALL accounts for about three out of four cases of childhood leukemia. Intensive chemotherapy treatment coupled with prophylactic or therapeutic antibiotic use could potentially have a long-term effect on the resident gastrointestinal (GI) microbiome. The composition of GI microbiome and its changes upon chemotherapy in pediatric and adolescent leukemia patients is poorly understood. In this study, using 16S rRNA marker gene sequences we profile the GI microbial communities of pediatric and adolescent acute leukemia patients before and after chemotherapy treatment and compare with the microbiota of their healthy siblings. RESULTS: Our study cohort consisted of 51 participants, made up of matched pediatric and adolescent patients with ALL and a healthy sibling. We elucidated and compared the GI microbiota profiles of patients and their healthy sibling controls via analysis of 16S rRNA gene sequencing data. We assessed the GI microbiota composition in pediatric and adolescent patients with ALL during the course of chemotherapy by comparing stool samples taken before chemotherapy with stool samples collected at varying time points during the chemotherapeutic treatment. The microbiota profiles of both patients and control sibling groups are dominated by members of Bacteroides, Prevotella, and Faecalibacterium. At the genus level, both groups share many taxa in common, but the microbiota diversity of the patient group is significantly lower than that of the control group. It was possible to distinguish between the patient and control groups based on their microbiota profiles. The top taxa include Anaerostipes, Coprococcus, Roseburia, and Ruminococcus2 with relatively higher abundance in the control group. The observed microbiota changes are likely the result of several factors including a direct influence of therapeutic compounds on the gut flora and an indirect effect of chemotherapy on the immune system, which, in turn, affects the microbiota. CONCLUSIONS: This study provides significant information on GI microbiota populations in immunocompromised children and opens up the potential for developing novel diagnostics based on stool tests and therapies to improve the dysbiotic condition of the microbiota at the time of diagnosis and in the earliest stages of chemotherapy.


Subject(s)
Gastrointestinal Tract/microbiology , Microbiota , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/microbiology , Adolescent , Antineoplastic Agents/therapeutic use , Area Under Curve , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Child , Child, Preschool , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Feces/microbiology , Female , Humans , Infant , Infant, Newborn , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/isolation & purification , RNA, Ribosomal, 16S/metabolism , ROC Curve , Sequence Analysis, DNA , Young Adult
8.
Microb Ecol ; 71(1): 233-42, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26370110

ABSTRACT

To date, there is a limited understanding of the role of the airway microbiome in the early life development of respiratory diseases such as asthma, partly due to a lack of simple and minimally invasive sample collection methods. In order to characterize the baseline microbiome of the upper respiratory tract (URT) in infants, a comparatively non-invasive method for sampling the URT microbiome suitable for use in infants was developed. Microbiome samples were collected by placing filter paper in the nostrils of 33 healthy, term infants enrolled as part of the Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure (INSPIRE) study. After bacterial genomic DNA was extracted from the filters, amplicons were generated with universal primers targeting the V1-V3 region of the 16S rRNA gene. This method was capable of capturing a wide variety of taxa expected to inhabit the nasal cavity. Analyses stratifying subjects by demographic and environmental factors previously observed or predicted to influence microbial communities were performed. Microbial community richness was found to be higher in infants who had been delivered via Cesarean section and in those who had been formula-fed; an association was observed between diet and delivery, which confounds this analysis. We have established a baseline URT microbiome using a non-invasive filter paper nasal sampling for this population, and future studies will be performed in this large observational cohort of infants to investigate the relationship between viral infections, the URT microbiota, and the development of childhood wheezing illnesses.


Subject(s)
Bacteria/isolation & purification , Bacteriological Techniques/methods , Delivery, Obstetric , Microbiota , Nose/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Bacteriological Techniques/instrumentation , Cohort Studies , Feeding Methods , Female , Humans , Infant , Infant, Newborn , Male , Phylogeny , Pregnancy , Respiratory System/microbiology , Respiratory Tract Infections/microbiology
9.
Nature ; 468(7320): 60-6, 2010 Nov 04.
Article in English | MEDLINE | ID: mdl-21048761

ABSTRACT

The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1-3.0 µm size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.


Subject(s)
Aquatic Organisms/genetics , Genomics , Metagenome , Plankton/genetics , Prokaryotic Cells/metabolism , Aquatic Organisms/classification , Aquatic Organisms/isolation & purification , Aquatic Organisms/virology , Biodiversity , Biomass , Databases, Protein , Genome, Bacterial/genetics , Models, Biological , Oceans and Seas , Phylogeny , Plankton/growth & development , Plankton/isolation & purification , Plankton/metabolism , Prokaryotic Cells/classification , Prokaryotic Cells/virology , RNA, Ribosomal, 16S/genetics , Water Microbiology
10.
J Proteome Res ; 14(8): 3123-35, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26143644

ABSTRACT

Individuals with type 1 diabetes (T1D) often have higher than normal blood glucose levels, causing advanced glycation end product formation and inflammation and increasing the risk of vascular complications years or decades later. To examine the urinary proteome in juveniles with T1D for signatures indicative of inflammatory consequences of hyperglycemia, we profiled the proteome of 40 T1D patients with an average of 6.3 years after disease onset and normal or elevated HbA1C levels, in comparison with a cohort of 41 healthy siblings. Using shotgun proteomics, 1036 proteins were identified, on average, per experiment, and 50 proteins showed significant abundance differences using a Wilcoxon signed-rank test (FDR q-value ≤ 0.05). Thirteen lysosomal proteins were increased in abundance in the T1D versus control cohort. Fifteen proteins with functional roles in vascular permeability and adhesion were quantitatively changed, including CD166 antigen and angiotensin-converting enzyme 2. α-N-Acetyl-galactosaminidase and α-fucosidase 2, two differentially abundant lysosomal enzymes, were detected in western blots with often elevated quantities in the T1D versus control cohort. Increased release of proteins derived from lysosomes and vascular epithelium into urine may result from hyperglycemia-associated inflammation in the kidney vasculature.


Subject(s)
Diabetes Mellitus, Type 1/urine , Enzymes/urine , Proteome/metabolism , Proteomics/methods , Siblings , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Activated-Leukocyte Cell Adhesion Molecule/urine , Adolescent , Angiotensin-Converting Enzyme 2 , Blotting, Western , Child , Chromatography, Liquid , Cohort Studies , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Enzymes/metabolism , Female , Humans , Lysosomes/enzymology , Lysosomes/metabolism , Male , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/urine , Tandem Mass Spectrometry , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/urine , alpha-N-Acetylgalactosaminidase/metabolism , alpha-N-Acetylgalactosaminidase/urine
11.
Bioinformatics ; 30(10): 1469-70, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24470574

ABSTRACT

SUMMARY: We present the first public release of our proteogenomic annotation pipeline. We have previously used our original unreleased implementation to improve the annotation of 46 diverse prokaryotic genomes by discovering novel genes, post-translational modifications and correcting the erroneous annotations by analyzing proteomic mass-spectrometry data. This public version has been redesigned to run in a wide range of parallel Linux computing environments and provided with the automated configuration, build and testing facilities for easy deployment and portability. AVAILABILITY AND IMPLEMENTATION: Source code is freely available from https://bitbucket.org/andreyto/proteogenomics under GPL license. It is implemented in Python and C++. It bundles the Makeflow engine to execute the workflows. CONTACT: atovtchi@jcvi.org.


Subject(s)
Cluster Analysis , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Prokaryotic Cells/chemistry , Proteomics/methods , Mass Spectrometry , Software
12.
PLoS Genet ; 8(7): e1002815, 2012.
Article in English | MEDLINE | ID: mdl-22829778

ABSTRACT

The YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media. A knock-out of the rsfA gene shows two strong phenotypes: (i) the viability of the mutant cells are sharply impaired during stationary phase (as shown by viability competition assays), and (ii) during transition from rich to poor media the mutant cells adapt slowly and show a growth block of more than 10 hours (as shown by growth competition assays). RsfA silences translation by binding to the L14 protein of the large ribosomal subunit and, as a consequence, impairs subunit joining (as shown by molecular modeling, reporter gene analysis, in vitro translation assays, and sucrose gradient analysis). This particular interaction is conserved in all species tested, including Escherichia coli, Treponema pallidum, Streptococcus pneumoniae, Synechocystis PCC 6803, as well as human mitochondria and maize chloroplasts (as demonstrated by yeast two-hybrid tests, pull-downs, and mutagenesis). RsfA is unrelated to the eukaryotic ribosomal anti-association/60S-assembly factor eIF6, which also binds to L14, and is the first such factor in bacteria and organelles. RsfA helps cells to adapt to slow-growth/stationary phase conditions by down-regulating protein synthesis, one of the most energy-consuming processes in both bacterial and eukaryotic cells.


Subject(s)
Bacteria , Eukaryota , Ribosomal Proteins/chemistry , Ribosome Subunits, Large/chemistry , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Conserved Sequence , Eukaryota/genetics , Eukaryota/growth & development , Eukaryota/metabolism , HeLa Cells , Humans , Mitochondria/genetics , Mitochondria/metabolism , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Biosynthesis/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Large/metabolism , Sequence Homology, Amino Acid , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Methods ; 58(4): 392-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22841565

ABSTRACT

Protein complexes are typically analyzed by affinity purification and subsequent mass spectrometric analysis. However, in most cases the structure and topology of the complexes remains elusive from such studies. Here we investigate how the yeast two-hybrid system can be used to analyze direct interactions among proteins in a complex. First we tested all pairwise interactions among the seven proteins of Escherichia coli DNA polymerase III as well as an uncharacterized complex that includes MntR and PerR. Four and seven interactions were identified in these two complexes, respectively. In addition, we review Y2H data for three other complexes of known structure which serve as "gold-standards", namely Varicella Zoster Virus (VZV) ribonucleotide reductase (RNR), the yeast proteasome, and bacteriophage lambda. Finally, we review an Y2H analysis of the human spliceosome which may serve as an example for a dynamic mega-complex.


Subject(s)
Two-Hybrid System Techniques/standards , Animals , Bacteriophage lambda/metabolism , Caenorhabditis elegans Proteins/metabolism , Crystallization , DNA Polymerase III/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Herpesvirus 3, Human/enzymology , Humans , Models, Molecular , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Protein Structure, Quaternary , Protein Subunits/metabolism , Reference Standards , Repressor Proteins/metabolism , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Spliceosomes/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
16.
Mol Ther Methods Clin Dev ; 19: 330-340, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33145369

ABSTRACT

The recombinant adeno-associated virus (AAV) vector is one of the most utilized viral vectors in gene therapy due to its robust, long-term in vivo transgene expression and low toxicity. One major hurdle for clinical AAV applications is large-scale manufacturing. In this regard, the baculovirus-based AAV production system is highly attractive due to its scalability and predictable biosafety. Here, we describe a simple method to improve the baculovirus-based AAV production using the ExpiSf Baculovirus Expression System with a chemically defined medium for suspension culture of high-density ExpiSf9 cells. Baculovirus-infected ExpiSf9 cells produced up to 5 × 1011 genome copies of highly purified AAV vectors per 1 mL of suspension culture, which is up to a 19-fold higher yield than the titers we obtained from the conventional Sf9 cell-based system. When mice were administered the same dose of AAV vectors, we saw comparable transduction efficiency and biodistributions between the vectors made in ExpiSf9 and Sf9 cells. Thus, the ExpiSf Baculovirus Expression System would support facile and scalable AAV manufacturing amenable for preclinical and clinical applications.

17.
Influenza Other Respir Viruses ; 14(4): 403-411, 2020 07.
Article in English | MEDLINE | ID: mdl-32126161

ABSTRACT

BACKGROUND: RSV is a leading cause of lower respiratory tract infection in infants. Monitoring RSV glycoprotein sequences is critical for understanding RSV epidemiology and viral antigenicity in the effort to develop anti-RSV prophylactics and therapeutics. OBJECTIVES: The objective is to characterize the circulating RSV strains collected from infants in South Africa during 2015-2017. METHODS: A subset of 150 RSV-positive samples obtained in South Africa from HIV-unexposed and HIV-exposed-uninfected infants from 2015 to 2017, were selected for high-throughput next-generation sequencing of the RSV F and G glycoprotein genes. The RSV G and F sequences were analyzed by a bioinformatic pipeline and compared to the USA samples from the same three-year period. RESULTS: Both RSV A and RSV B co-circulated in South Africa during 2015-2017, with a shift from RSV A (58%-61% in 2015-2016) to RSV B (69%) in 2017. RSV A ON1 and RSV B BA9 genotypes emerged as the most prevalent genotypes in 2017. Variations at the F protein antigenic sites were observed for both RSV A and B strains, with dominant changes (L172Q/S173L) at antigenic site V observed in RSV B strains. RSV A and B F protein sequences from South Africa were very similar to the USA isolates except for a higher rate of RSV A NA1 and RSV B BA10 genotypes in South Africa. CONCLUSION: RSV G and F genes continue to evolve and exhibit both local and global circulation patterns in South Africa, supporting the need for continued national surveillance.


Subject(s)
HIV Infections/virology , Phylogeny , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Antigens, Viral/genetics , Female , Genotype , HIV Infections/epidemiology , Humans , Infant , Male , RNA, Viral/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/isolation & purification , Sequence Analysis, DNA , South Africa/epidemiology
18.
Sci Rep ; 10(1): 20618, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244064

ABSTRACT

Despite being commonly used to collect upper airway epithelial lining fluid, nasal washes are poorly reproducible, not suitable for serial sampling, and limited by a dilution effect. In contrast, nasal filters lack these limitations and are an attractive alternative. To examine whether nasal filters are superior to nasal washes as a sampling method for the characterization of the upper airway microbiome and immune response, we collected paired nasal filters and washes from a group of 40 healthy children and adults. To characterize the upper airway microbiome, we used 16S ribosomal RNA and shotgun metagenomic sequencing. To characterize the immune response, we measured total protein using a BCA assay and 53 immune mediators using multiplex magnetic bead-based assays. We conducted statistical analyses to compare common microbial ecology indices and immune-mediator median fluorescence intensities (MFIs) between sample types. In general, nasal filters were more likely to pass quality control in both children and adults. There were no significant differences in microbiome community richness, α-diversity, or structure between pediatric samples types; however, these were all highly dissimilar between adult sample types. In addition, there were significant differences in the abundance of amplicon sequence variants between sample types in children and adults. In adults, total proteins were significantly higher in nasal filters than nasal washes; consequently, the immune-mediator MFIs were not well detected in nasal washes. Based on better quality control sequencing metrics and higher immunoassay sensitivity, our results suggest that nasal filters are a superior sampling method to characterize the upper airway microbiome and immune response in both children and adults.


Subject(s)
Microbiota/genetics , Microbiota/immunology , Nasal Lavage Fluid/immunology , Nasal Lavage Fluid/microbiology , Nose/immunology , Nose/microbiology , Adult , Child , Female , Humans , Immunity/genetics , Immunity/immunology , Male , Metagenome/genetics , Metagenome/immunology , Nasal Absorption/immunology , Nasal Cavity/immunology , Nasal Cavity/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/immunology , Specimen Handling/methods
19.
Sci Rep ; 9(1): 3898, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846850

ABSTRACT

Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infection in infants and elderly. To understand the evolution of neutralizing epitopes on the RSV glycoprotein (G) and fusion (F) proteins, we conducted a multi-year surveillance program (OUTSMART-RSV) in the US. Analysis of 1,146 RSV samples from 2015-2017 revealed a slight shift in prevalence from RSV A (58.7%) to B (53.7%) between the two seasons. RSV B was more prevalent in elderly (52.9% and 73.4%). Approximately 1% of the samples contained both RSV A and B viruses. All RSV A isolates were ON1 and almost all the B isolates were BA9 genotypes. Compared with the 2013 reference sequences, changes at the F antigenic sites of RSV B were greater than RSV A, which mainly occurred at antigenic sites V (L172Q/S173L at 99.6%), Ø (I206M/Q209K at 18.6%) and IV (E463D at 7%) of RSV B F. Sequence diversities in the G protein second hypervariable region were observed in the duplicated regions for RSV A and B, and at the G stop codon resulting in extension of 7 amino acids (22.1%) for RSV B in 2016-17. Thus, RSV surface glycoproteins are continuously evolving, and continued surveillance is important for the clinical evaluation of immunoprophylactic products.


Subject(s)
Antigens, Viral/immunology , Epitopes/immunology , Glycoproteins/immunology , Respiratory Syncytial Virus, Human/immunology , Humans , Respiratory Syncytial Virus Infections/virology , United States
20.
Clin Transl Gastroenterol ; 10(6): e00039, 2019 06.
Article in English | MEDLINE | ID: mdl-31107724

ABSTRACT

OBJECTIVES: Eosinophilic esophagitis (EoE) is an allergen-mediated inflammatory disease affecting the esophagus. Although microbial communities may affect the host immune responses, little is known about the role of the microbiome in EoE. We compared the composition of the salivary microbiome in children with EoE with that of non-EoE controls to test the hypotheses that the salivary microbiome is altered in children with EoE and is associated with disease activity. METHODS: Saliva samples were collected from 26 children with EoE and 19 non-EoE controls comparable for age and ethnicity. The salivary microbiome was profiled using 16S rRNA gene sequencing. Disease activity was assessed using the Eosinophilic Esophagitis Endoscopic Reference Score and the Eosinophilic Esophagitis Histologic Scoring System (EoEHSS). RESULTS: A trend toward lower microbial richness and alpha diversity was noted in children with EoE. Although the overall salivary microbiome composition was similar between children with and without EoE, specific taxa such as Streptococcus (q value = 0.06) tended to be abundant in children with active EoE compared with non-EoE controls. Haemophilus was significantly abundant in children with active EoE compared with inactive EoE (q value = 0.0008) and increased with the increasing EoEHSS and Eosinophilic Esophagitis Histology Scoring System (q value = 5e-10). In addition, 4 broad salivary microbial communities correlated with the EoEHSS. DISCUSSION: The composition of the salivary microbiome community structure can be altered in children with EoE. A relative abundance of Haemophilus positively correlates with the disease activity. These findings indicate that perturbations in the salivary microbiome may have a role in EoE pathobiology and could serve as a noninvasive marker of disease activity.


Subject(s)
Eosinophilic Esophagitis/microbiology , Microbiota , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Adolescent , Case-Control Studies , Child , Eosinophilic Esophagitis/pathology , Esophagoscopy , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL