Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Microbiol ; 12: 640325, 2021.
Article in English | MEDLINE | ID: mdl-33633719

ABSTRACT

BACKGROUND: Hepatitis E virus (HEV) is a common cause of acute viral hepatitis with significant morbidity and mortality, particularly in pregnant women. There are four major genotypes which can cause disease in humans. Genotypes 1 and 2 are usually associated with outbreaks and spread via facal/oral route or contaminated water. Genotypes 3 and 4 are zoonotic and usually associated with handling of pigs or consumption of contaminated pork. The strains circulating in Australia have never been characterized. RATIONALE/AIMS: The aims for this project are to identify the HEV genotypes found in Australia and link them to possible sources of transmission by phylogenetic analysis. MATERIALS AND METHODS: Between 2015 and 2020, 91 HEV isolates were sequenced and genotyped using an in-house PCR. Sixty-six of these were also sequenced by using the international HEVnet primers. Genotypes were determined using the BLASTn program. Relatedness to other strains in Australia was determined by phylogenetic analyses of the HEVnet sequences. Isolates were also stratified by state of origin, gender, age, predisposing factors and travel history (if known). RESULTS: Of the 91 HEV isolates sequenced, 55 (60.4%) were genotype 1. There were 34 (37.4%) genotype 3 strains and two genotype 4 (2.2%). At least 20 of the genotype 1 strains have been linked to travel in India, and another three with Pakistan. Five of the "Indian" strains were closely related and are suspected to have originated in Gujarat. Phylogenetic analysis also showed that 12 genotype 3 strains were genetically related and potentially acquired in/from New South Wales, Australia. The two genotype 4 strains may have originated in China. DISCUSSION: This is the first study to describe the HEV isolates identified in Australia. The results infer that HEV may be acquired during overseas travel as well as locally, presumably from consumption of pork or pork-related products. The phylogenetic analyses also reveal clusters of infection originating from India and Pakistan. This study provides some insight into the source and epidemiology of HEV infection in Australia which may be used to guide public health procedure and enable the implementation of measures to deal with potential outbreaks of infection.

2.
Hepat Mon ; 14(1): e14678, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497881

ABSTRACT

BACKGROUND: Detectable HCV-specific cellular immune responses in HCV antibody and RNA negative people who inject drugs (PWID) raise the question of whether some are resistant to HCV infection. Immune responses from people who have been exposed to hepatitis C virus (HCV) and remain anti-HCV negative are of interest for HCV vaccine development; however, limited research addresses this area. OBJECTIVES: In a cohort of HCV antibody and RNA negative PWID, we assessed whether the presence of HCV-specific IFN-γ responses or genetic associations provide any evidence of protection from HCV infection. PATIENTS AND METHODS: One hundred and ninety-eight participants were examined longitudinally for clinical, behavioral, social, environmental and genetic characteristics (IFNL3 genotype [formally IL-28B] and HLA type). Sixty-one of the 198 participants were HCV antibody and RNA negative, with 53 able to be examined longitudinally for HCV-specific IFN-γ ELISpot T cell responses. RESULTS: Ten of the 53 HCV antibody and RNA negative participants had detectable HCV-specific IFN-γ responses at baseline (18%). The magnitude of IFN-γ responses averaged 131 +/- 96 SFC/106 PBMC and the breadth was mean 1 +/- 1 pool positive. The specificity of responses were mainly directed to E2, NS4b and NS5b. Participants with (10) and without (43) HCV-specific IFN-γ responses did not differ in behavioral, clinical or genetic characteristics (P > 0.05). There was a larger proportion sharing needles (with 70%, without 49%, P = 0.320) and a higher incidence of HCV (with 35.1 per 100 py, 95% CI 14.6, 84.4, without 16.0 per 100 py, 95% CI 7.2, 35.6, P = 0.212) in those with IFN-γ responses, although not statistically significant. Half the participants with baseline IFN-γ responses became HCV RNA positive (5/10), with one of these participants spontaneously clearing HCV. The spontaneous clearer had high magnitude and broad Th1 responses, favorable IFNL3 genotype and favorable HLA types. CONCLUSIONS: This study demonstrated the detection of HCV-specific IFN-γ responses in HCV antibody and RNA negative individuals, with a tendency for HCV-specific IFN-γ responses to be associated with HCV exposure. The potential role of HCV-specific IFN-γ responses in those who remained HCV RNA negative is of value for the development of novel HCV therapeutics.

3.
PLoS One ; 7(10): e47335, 2012.
Article in English | MEDLINE | ID: mdl-23110068

ABSTRACT

It is hypothesized that social networks facilitate transmission of the hepatitis C virus (HCV). We tested for association between HCV phylogeny and reported injecting relationships using longitudinal data from a social network design study. People who inject drugs were recruited from street drug markets in Melbourne, Australia. Interviews and blood tests took place three monthly (during 2005-2008), with participants asked to nominate up to five injecting partners at each interview. The HCV core region of individual isolates was then sequenced and phylogenetic trees were constructed. Genetic clusters were identified using bootstrapping (cut-off: 70%). An adjusted Jaccard similarity coefficient was used to measure the association between the reported injecting relationships and relationships defined by clustering in the phylogenetic analysis (statistical significance assessed using the quadratic assignment procedure). 402 participants consented to participate; 244 HCV infections were observed in 238 individuals. 26 genetic clusters were identified, with 2-7 infections per cluster. Newly acquired infection (AOR = 2.03, 95% CI: 1.04-3.96, p = 0.037, and HCV genotype 3 (vs. genotype 1, AOR = 2.72, 95% CI: 1.48-4.99) were independent predictors of being in a cluster. 54% of participants whose infections were part of a cluster in the phylogenetic analysis reported injecting with at least one other participant in that cluster during the study. Overall, 16% of participants who were infected at study entry and 40% of participants with newly acquired infections had molecular evidence of related infections with at least one injecting partner. Likely transmission clusters identified in phylogenetic analysis correlated with reported injecting relationships (adjusted Jaccard coefficient: 0.300; p<0.001). This is the first study to show that HCV phylogeny is associated with the injecting network, highlighting the importance of the injecting network in HCV transmission.


Subject(s)
Hepacivirus/genetics , Substance Abuse, Intravenous/virology , Adult , Female , Genotype , Hepacivirus/classification , Hepatitis C/transmission , Humans , Male , Phylogeny , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL