Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743168

ABSTRACT

We have previously showed that plasma membrane cholesterol and GM1 ganglioside content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here, we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation, phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1, and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes of P2X7-induced cellular responses in T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Hypercholesterolemia , Adenosine Triphosphate/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cholesterol/metabolism , Diet, High-Fat , G(M1) Ganglioside/metabolism , Hypercholesterolemia/etiology , Hypercholesterolemia/metabolism , Mice , Receptors, Purinergic P2X7/metabolism , T-Lymphocyte Subsets/metabolism
2.
Gut ; 70(7): 1299-1308, 2021 07.
Article in English | MEDLINE | ID: mdl-33004548

ABSTRACT

OBJECTIVE: Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions. DESIGN: We used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice. RESULTS: Pectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists. CONCLUSIONS: Improvement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Intestines/microbiology , Liver Diseases, Alcoholic/etiology , Microbiota/physiology , Pectins/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/genetics , Carbazoles/pharmacology , Disease Models, Animal , Fecal Microbiota Transplantation , Feces/chemistry , Female , Humans , Intestines/physiopathology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Metabolome/drug effects , Mice , Mice, Knockout , Microbiota/drug effects , Pectins/therapeutic use , Prebiotics , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/genetics
3.
Gut Microbes ; 14(1): 2058851, 2022.
Article in English | MEDLINE | ID: mdl-35373699

ABSTRACT

Enterococcus faecalis is a bacterial species present at a subdominant level in the human gut microbiota. This commensal turns into an opportunistic pathogen under specific conditions involving dysbiosis and host immune deficiency. E. faecalis is one of the rare pathobionts identified to date as contributing to liver damage in alcoholic liver disease. We have previously observed that E. faecalis is internalized in hepatocytes. Here, the survival and fate of E. faecalis was examined in hepatocytes, the main epithelial cell type in the liver. Although referred to as an extracellular pathogen, we demonstrate that E. faecalis is able to survive and divide in hepatocytes, and form intracellular clusters in two distinct hepatocyte cell lines, in primary mouse hepatocytes, as well as in vivo. This novel process extends to kidney cells. Unraveling the intracellular lifestyle of E. faecalis, our findings contribute to the understanding of pathobiont-driven diseases.


Subject(s)
Enterococcus faecalis , Gastrointestinal Microbiome , Animals , Dysbiosis , Hepatocytes , Life Style , Mice
4.
Cells ; 11(6)2022 03 11.
Article in English | MEDLINE | ID: mdl-35326419

ABSTRACT

Reshaping the intestinal microbiota by the ingestion of fiber, such as pectin, improves alcohol-induced liver lesions in mice by modulating bacterial metabolites, including indoles, as well as bile acids (BAs). In this context, we aimed to elucidate how oral supplementation of pectin affects BA metabolism in alcohol-challenged mice receiving feces from patients with alcoholic hepatitis. Pectin reduced alcohol liver disease. This beneficial effect correlated with lower BA levels in the plasma and liver but higher levels in the caecum, suggesting that pectin stimulated BA excretion. Pectin modified the overall BA composition, favoring an augmentation in the proportion of hydrophilic forms in the liver, plasma, and gut. This effect was linked to an imbalance between hydrophobic and hydrophilic (less toxic) BAs in the gut. Pectin induced the enrichment of intestinal bacteria harboring genes that encode BA-metabolizing enzymes. The modulation of BA content by pectin inhibited farnesoid X receptor signaling in the ileum and the subsequent upregulation of Cyp7a1 in the liver. Despite an increase in BA synthesis, pectin reduced BA serum levels by promoting their intestinal excretion. In conclusion, pectin alleviates alcohol liver disease by modifying the BA cycle through effects on the intestinal microbiota and enhanced BA excretion.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Animals , Bile Acids and Salts , Humans , Mice , Pectins/pharmacology
5.
Nutrients ; 13(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34835981

ABSTRACT

Pectin, a soluble fiber, improves non-alcoholic fatty-liver disease (NAFLD), but its mechanisms are unclear. We aimed to investigate the role of pectin-induced changes in intestinal microbiota (IM) in NAFLD. We recovered the IM from mice fed a high-fat diet, treated or not with pectin, to perform a fecal microbiota transfer (FMT). Mice fed a high-fat diet, which induces NAFLD, were treated with pectin or received a fecal microbiota transfer (FMT) from mice treated with pectin before (preventive FMT) or after (curative FMT) being fed a high-fat diet. Pectin prevented the development of NAFLD, induced browning of adipose tissue, and modified the IM without increasing the abundance of proteobacteria. Preventive FMT also induced browning of white adipose tissue but did not improve liver steatosis, in contrast to curative FMT, which induced an improvement in steatosis. This was associated with an increase in the concentration of short-chain fatty acids (SCFAs), in contrast to preventive FMT, which induced an increase in the concentration of branched SCFAs. Overall, we show that the effect of pectin may be partially mediated by gut bacteria.


Subject(s)
Fatty Liver/microbiology , Gastrointestinal Microbiome/drug effects , Pectins/pharmacology , Adipose Tissue, White/pathology , Animals , Diet, High-Fat , Fatty Liver/therapy , Fecal Microbiota Transplantation , Male , Mice, Inbred C57BL , Mice, Obese
6.
JHEP Rep ; 3(2): 100230, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33665587

ABSTRACT

BACKGROUND & AIMS: Bile-acid metabolism and the intestinal microbiota are impaired in alcohol-related liver disease. Activation of the bile-acid receptor TGR5 (or GPBAR1) controls both biliary homeostasis and inflammatory processes. We examined the role of TGR5 in alcohol-induced liver injury in mice. METHODS: We used TGR5-deficient (TGR5-KO) and wild-type (WT) female mice, fed alcohol or not, to study the involvement of liver macrophages, the intestinal microbiota (16S sequencing), and bile-acid profiles (high-performance liquid chromatography coupled to tandem mass spectrometry). Hepatic triglyceride accumulation and inflammatory processes were assessed in parallel. RESULTS: TGR5 deficiency worsened liver injury, as shown by greater steatosis and inflammation than in WT mice. Isolation of liver macrophages from WT and TGR5-KO alcohol-fed mice showed that TGR5 deficiency did not increase the pro-inflammatory phenotype of liver macrophages but increased their recruitment to the liver. TGR5 deficiency induced dysbiosis, independently of alcohol intake, and transplantation of the TGR5-KO intestinal microbiota to WT mice was sufficient to worsen alcohol-induced liver inflammation. Secondary bile-acid levels were markedly lower in alcohol-fed TGR5-KO than normally fed WT and TGR5-KO mice. Consistent with these results, predictive analysis showed the abundance of bacterial genes involved in bile-acid transformation to be lower in alcohol-fed TGR5-KO than WT mice. This altered bile-acid profile may explain, in particular, why bile-acid synthesis was not repressed and inflammatory processes were exacerbated. CONCLUSIONS: A lack of TGR5 was associated with worsening of alcohol-induced liver injury, a phenotype mainly related to intestinal microbiota dysbiosis and an altered bile-acid profile, following the consumption of alcohol. LAY SUMMARY: Excessive chronic alcohol intake can induce liver disease. Bile acids are molecules produced by the liver and can modulate disease severity. We addressed the specific role of TGR5, a bile-acid receptor. We found that TGR5 deficiency worsened alcohol-induced liver injury and induced both intestinal microbiota dysbiosis and bile-acid pool remodelling. Our data suggest that both the intestinal microbiota and TGR5 may be targeted in the context of human alcohol-induced liver injury.

SELECTION OF CITATIONS
SEARCH DETAIL