Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mar Drugs ; 21(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37233460

ABSTRACT

Colorectal cancer is among the most prevalent and lethal cancers globally. To address this emergency, countries have developed diffuse screening programs and innovative surgical techniques with a consequent decrease in mortality rates in non-metastatic patients. However, five years after diagnosis, metastatic CRC is still characterized by less than 20% survival. Most patients with metastatic CRC cannot be surgically treated. For them, the only option is treatment with conventional chemotherapies, which cause harmful side effects in normal tissues. In this context, nanomedicine can help traditional medicine overcome its limits. Diatomite nanoparticles (DNPs) are innovative nano-based drug delivery systems derived from the powder of diatom shells. Diatomite is a porous biosilica largely found in many areas of the world and approved by the Food and Drug Administration (FDA) for pharmaceutical and animal feed formulations. Diatomite nanoparticles with a size between 300 and 400 nm were shown to be biocompatible nanocarriers capable of delivering chemotherapeutic agents against specific targets while reducing off-target effects. This review discusses the treatment of colorectal cancer with conventional methods, highlighting the drawbacks of standard medicine and exploring innovative options based on the use of diatomite-based drug delivery systems. Three targeted treatments are considered: anti-angiogenetic drugs, antimetastatic drugs, and immune checkpoint inhibitors.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Diatoms , Nanoparticles , Animals , Nanomedicine , Diatomaceous Earth , Drug Delivery Systems , Colorectal Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
Small ; 18(41): e2204732, 2022 10.
Article in English | MEDLINE | ID: mdl-36089668

ABSTRACT

Redox-responsive silica drug delivery systems are synthesized by aeco-friendly diatomite source to achieve on-demand release of peptide nucleic acid (PNA) in tumor reducing microenvironment, aiming to inhibit the immune checkpoint programmed cell death 1 receptor/programmed cell death receptor ligand 1 (PD-1/PD-L1) in cancer cells. The nanoparticles (NPs) are coated with polyethylene glycol chains as gatekeepers to improve their physicochemical properties and control drug release through the cleavable disulfide bonds (S-S) in a reductive environment. This study describes different chemical conditions to achieve the highest NPs' surface functionalization yield, exploring both multistep and one-pot chemical functionalization strategies. The best formulation is used for covalent PNA conjugation via the S-S bond reaching a loading degree of 306 ± 25 µg PNA mg-1 DNPs . These systems are used for in vitro studies to evaluate the kinetic release, biocompatibility, cellular uptake, and activity on different cancer cells expressing high levels of PD-L1. The obtained results prove the safety of the NPs up to 200 µg mL-1 and their advantage for controlling and enhancing the PNA intracellular release as well as antitumor activity. Moreover, the downregulation of PD-L1 observed only with MDA-MB-231 cancer cells paves the way for targeted immunotherapy.


Subject(s)
Antineoplastic Agents , Nanoparticles , Peptide Nucleic Acids , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , B7-H1 Antigen , Cell Line, Tumor , Diatomaceous Earth , Disulfides , Ligands , Nanoparticles/chemistry , Oxidation-Reduction , Peptides , Polyethylene Glycols/chemistry , Programmed Cell Death 1 Receptor , Silicon Dioxide
3.
Small ; 17(34): e2101711, 2021 08.
Article in English | MEDLINE | ID: mdl-34302422

ABSTRACT

The small molecule Galunisertib (LY2157299, LY) shows multiple anticancer activities blocking the transforming growth factor-ß1 receptor, responsible for the epithelial-to-mesenchymal transition (EMT) by which colorectal cancer (CRC) cells acquire migratory and metastatic capacities. However, frequent dosing of LY can produce highly toxic metabolites. Alternative strategies to reduce drug side effects can rely on nanoscale drug delivery systems that have led to a medical revolution in the treatment of cancer, improving drug efficacy and lowering drug toxicity. Here, a hybrid nanosystem (DNP-AuNPs-LY@Gel) made of a porous diatomite nanoparticle decorated with plasmonic gold nanoparticles, in which LY is retained by a gelatin shell, is proposed. The multifunctional capability of the nanosystem is demonstrated by investigating the efficient LY delivery, the enhanced EMT reversion in CRCs and the intracellular quantification of drug release with a sub-femtogram resolution by surface-enhanced Raman spectroscopy (SERS). The LY release trigger is the pH sensitivity of the gelatin shell to the CRC acidic microenvironment. The drug release is real-time monitored at single-cell level by analyzing the SERS signals of LY in CRC cells. The higher efficiency of LY delivered by the DNP-AuNPs-LY@Gel complex paves the way to an alternative strategy for lowering drug dosing and consequent side effects.


Subject(s)
Colorectal Neoplasms , Metal Nanoparticles , Colorectal Neoplasms/drug therapy , Diatomaceous Earth , Gold , Humans , Pyrazoles , Quinolines , Tumor Microenvironment
4.
Int J Mol Sci ; 22(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34639096

ABSTRACT

Inorganic diatomite nanoparticles (DNPs) have gained increasing interest as drug delivery systems due to their porous structure, long half-life, thermal and chemical stability. Gold nanoparticles (AuNPs) provide DNPs with intriguing optical features that can be engineered and optimized for sensing and drug delivery applications. In this work, we combine DNPs with gelatin stabilized AuNPs for the development of an optical platform for Galunisertib delivery. To improve the DNP loading capacity, the hybrid platform is capped with gelatin shells of increasing thicknesses. Here, for the first time, full optical modeling of the hybrid system is proposed to monitor both the gelatin generation, degradation, and consequent Galunisertib release by simple spectroscopic measurements. Indeed, the shell thickness is optically estimated as a function of the polymer concentration by exploiting the localized surface plasmon resonance shifts of AuNPs. We simultaneously prove the enhancement of the drug loading capacity of DNPs and that the theoretical modeling represents an efficient predictive tool to design polymer-coated nanocarriers.


Subject(s)
Diatomaceous Earth/chemistry , Drug Delivery Systems , Drug Liberation , Gelatin/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Pyrazoles/metabolism , Quinolines/metabolism , Porosity
5.
Adv Healthc Mater ; 12(6): e2202672, 2023 01.
Article in English | MEDLINE | ID: mdl-36459471

ABSTRACT

The oral route is highly desirable for colorectal cancer (CRC) treatment because it allows concentrating the drug in the colon and achieving a localized effect. However, orally administered drugs are often metabolized in the liver, resulting in reduced efficacy and the need for higher doses. Nanoparticle-based drug delivery systems can be engineered to prevent the diffusion of the drug in the stomach, addressing the release at the target site, and enhancing the efficacy of the delivered drug. Here, an orally administrable galunisertib delivery system is developed with gelatin-covered diatomite nanoparticles targeting the ligand 1-cell adhesion molecule (L1-CAM) on metastatic cells, and further encapsulated in an enteric matrix by microfluidics. The gastro-resistant polymer protects the nanoparticles from the action of the digestive enzymes and allows for a sustained release of galunisertib at the intestinal pH. The efficacy of antibody-antigen interactions to drive the internalization of nanoparticles in the targeted cells is investigated in CRC cells expressing abnormal (SW620) or basal levels (Caco-2, HT29-MTX) of L1-CAM. The combination of local drug release and active targeting enhances the effect of the delivered galunisertib, which inhibits the migration of the SW620 cells with greater efficiency compared to the free drug.


Subject(s)
Colonic Neoplasms , Nanoparticles , Humans , Caco-2 Cells , Microfluidics/methods , Colonic Neoplasms/drug therapy , Nanoparticles/chemistry , Pharmaceutical Preparations , Stomach , Drug Delivery Systems/methods
6.
Nanomaterials (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615964

ABSTRACT

Materials that are able to produce free radicals have gained increasing attention for environmental and biomedical purposes. Free radicals, such as the superoxide anion (O2•-), act as secondary messengers in many physiological pathways, such as cell survival. Therefore, the production of free radicals over physiological levels has been exploited in the treatment of different types of cancer, including osteosarcoma (OS). In most cases, the production of reactive oxygen species (ROS) by materials is light-induced and requires the use of chemical photosensitisers, making it difficult and expensive. Here, for the first time, we propose photoluminescent hybrid ZrO2-acetylacetonate nanoparticles (ZrO2-acac NPs) that are capable of generating O2•- without light activation as an adjuvant for the treatment of OS. To increase the uptake and ROS generation in cancer cells, we modify the surface of ZrO2-acac NPs with hyaluronic acid (HA), which recognizes and binds to the surface antigen CD44 overexpressed on OS cells. Since these nanoparticles emit in the visible range, their uptake into cancer cells can be followed by a label-free approach. Overall, we show that the generation of O2•- is toxic to OS cells and can be used as an adjuvant treatment to increase the efficacy of conventional drugs.

7.
Front Immunol ; 12: 758410, 2021.
Article in English | MEDLINE | ID: mdl-34691081

ABSTRACT

Engineered gold nanoparticles (AuNPs) find application in several fields related to human activities (i.e., food and cosmetic industry or water purification) including medicine, where they are employed for diagnosis, drug delivery and cancer therapy. As for any material/reagent for human use, the safety of AuNPs needs accurate evaluation. AuNPs are prone to contamination by bacterial endotoxin (lipopolysaccharide, LPS), a potent elicitor of inflammatory responses in mammals. It is therefore important, when assessing AuNP immunosafety and immune-related effects, to discriminate between inflammatory effects intrinsic to the NPs from those caused by an undeliberate and undetected LPS contamination. Detection of LPS contamination in AuNP preparations poses different problems when using the current LPS detection assays, given the general interference of NPs, similar to other particulate agents, with the assay reagents and endpoints. This leads to time-consuming search for optimal assay conditions for every NP batch, with unpredictable results, and to the use in parallel of different assays, each with its weaknesses and unpredictability. Thus, the development of highly sensitive, quantitative and accurate assays able to detect of LPS on AuNPs is very important, in view of their medical applications. Surface-enhanced Raman spectroscopy (SERS) is a label-free, sensitive, chemical-specific, nondestructive and fast technique that can be used to directly obtain molecular fingerprint information and a quantitative analysis of LPS adsorbed on AuNPs. Within this study, we describe the use of SERS for the label-free identification and quantitative evaluation - down to few attograms - of the LPS adsorbed on the surface of 50 nm AuNPs. We thus propose SERS as an efficient tool to detect LPS on the AuNP surface, and as the basis for the development of a new sensitive and specific LPS-detection sensor based on the use of AuNPs and SERS.


Subject(s)
Gold/chemistry , Lipopolysaccharides/analysis , Metal Nanoparticles/chemistry , Biosensing Techniques , Humans , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL