Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996576

ABSTRACT

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Subject(s)
Cryoelectron Microscopy , Glycine Hydroxymethyltransferase , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Humans , RNA/metabolism , RNA/genetics , Serine/metabolism , Allosteric Regulation , Protein Binding , Phylogeny , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Glycine/metabolism , Glycine/chemistry , Binding Sites
2.
Cell Death Dis ; 15(6): 388, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830901

ABSTRACT

Vitamin B6 is a water-soluble vitamin which possesses antioxidant properties. Its catalytically active form, pyridoxal 5'-phosphate (PLP), is a crucial cofactor for DNA and amino acid metabolism. The inverse correlation between vitamin B6 and cancer risk has been observed in several studies, although dietary vitamin B6 intake sometimes failed to confirm this association. However, the molecular link between vitamin B6 and cancer remains elusive. Previous work has shown that vitamin B6 deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, suggesting that genome instability may correlate the lack of this vitamin to cancer. Here we provide evidence in support of this hypothesis. Firstly, we show that PLP deficiency, induced by the PLP antagonists 4-deoxypyridoxine (4DP) or ginkgotoxin (GT), promoted tumorigenesis in eye larval discs transforming benign RasV12 tumors into aggressive forms. In contrast, PLP supplementation reduced the development of tumors. We also show that low PLP levels, induced by 4DP or by silencing the sgllPNPO gene involved in PLP biosynthesis, worsened the tumor phenotype in another Drosophila cancer model generated by concomitantly activating RasV12 and downregulating Discs-large (Dlg) gene. Moreover, we found that RasV12 eye discs from larvae reared on 4DP displayed CABs, reactive oxygen species (ROS) and low catalytic activity of serine hydroxymethyltransferase (SHMT), a PLP-dependent enzyme involved in thymidylate (dTMP) biosynthesis, in turn required for DNA replication and repair. Feeding RasV12 4DP-fed larvae with PLP or ascorbic acid (AA) plus dTMP, rescued both CABs and tumors. The same effect was produced by overexpressing catalase in RasV12 DlgRNAi 4DP-fed larvae, thus allowing to establish a relationship between PLP deficiency, CABs, and cancer. Overall, our data provide the first in vivo demonstration that PLP deficiency can impact on cancer by increasing genome instability, which is in turn mediated by ROS and reduced dTMP levels.


Subject(s)
Vitamin B 6 Deficiency , Animals , Vitamin B 6 Deficiency/metabolism , Vitamin B 6 Deficiency/complications , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Vitamin B 6/metabolism , Vitamin B 6/pharmacology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila/metabolism , Pyridoxal Phosphate/metabolism , Reactive Oxygen Species/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Carcinogenesis/drug effects , ras Proteins/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Larva/metabolism , Humans
3.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615009

ABSTRACT

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Subject(s)
Aldehyde-Lyases , Fructose-Bisphosphate Aldolase , Humans , Animals , Mice , Fructose-Bisphosphate Aldolase/genetics , Catalysis , Gene Library , Glycine Hydroxymethyltransferase/genetics , Carnitine , Mammals
4.
Protein Sci ; 33(2): e4900, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38284493

ABSTRACT

Adequate levels of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6 , and its proper distribution in the body are essential for human health. The PLP recycling pathway plays a crucial role in these processes and its defects cause severe neurological diseases. The enzyme pyridox(am)ine 5'-phosphate oxidase (PNPO), whose catalytic action yields PLP, is one of the key players in this pathway. Mutations in the gene encoding PNPO are responsible for a severe form of neonatal epilepsy. Recently, PNPO has also been described as a potential target for chemotherapeutic agents. Our laboratory has highlighted the crucial role of PNPO in the regulation of PLP levels in the cell, which occurs via a feedback inhibition mechanism of the enzyme, exerted by binding of PLP at an allosteric site. Through docking analyses and site-directed mutagenesis experiments, here we identified the allosteric PLP binding site of human PNPO. This site is located in the same protein region as the allosteric site we previously identified in the Escherichia coli enzyme homologue. However, the identity and arrangement of the amino acid residues involved in PLP binding are completely different and resemble those of the active site of PLP-dependent enzymes. The identification of the PLP allosteric site of human PNPO paves the way for the rational design of enzyme inhibitors as potential anti-cancer compounds.


Subject(s)
Oxidoreductases , Pyridoxaminephosphate Oxidase , Humans , Allosteric Site , Oxidoreductases/metabolism , Phosphates , Pyridoxal Phosphate/metabolism , Pyridoxaminephosphate Oxidase/genetics , Pyridoxaminephosphate Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL