Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.023
Filter
Add more filters

Publication year range
1.
EMBO J ; 43(15): 3240-3255, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886582

ABSTRACT

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cytidine Deaminase , DNA Damage , DNA Replication , Humans , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Genomic Instability , Cell Line, Tumor , Proteins
2.
Nature ; 592(7852): 122-127, 2021 04.
Article in English | MEDLINE | ID: mdl-33636719

ABSTRACT

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Virus Replication/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Bronchi/cytology , Bronchi/virology , COVID-19/epidemiology , Cell Line , Cells, Cultured , Cricetinae , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets/virology , Founder Effect , Gene Knock-In Techniques , Genetic Fitness , Humans , Male , Mesocricetus , Mice , Nasal Mucosa/cytology , Nasal Mucosa/virology , Protein Binding , RNA, Viral/analysis , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
3.
J Biol Chem ; 300(5): 107280, 2024 May.
Article in English | MEDLINE | ID: mdl-38588810

ABSTRACT

Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.


Subject(s)
Eosinophils , Humans , Amino Acid Sequence , Eosinophils/metabolism , Eosinophils/enzymology , Evolution, Molecular , Ribonucleases/metabolism , Ribonucleases/chemistry , Ribonucleases/genetics , Animals , Macaca fascicularis , Phylogeny , Models, Molecular , Protein Structure, Tertiary
4.
PLoS Biol ; 20(11): e3001871, 2022 11.
Article in English | MEDLINE | ID: mdl-36383605

ABSTRACT

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Virus Shedding , Antibodies, Blocking
5.
Chem Rev ; 123(5): 2311-2348, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36354420

ABSTRACT

The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.

6.
Nature ; 569(7758): 663-671, 2019 05.
Article in English | MEDLINE | ID: mdl-31142858

ABSTRACT

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Subject(s)
Biomarkers/metabolism , Computational Biology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/genetics , Prediabetic State/microbiology , Proteome/metabolism , Transcriptome , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Biomarkers/analysis , Cohort Studies , Datasets as Topic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Healthy Volunteers , Humans , Inflammation/metabolism , Influenza Vaccines/immunology , Insulin/metabolism , Insulin Resistance , Longitudinal Studies , Male , Microbiota/physiology , Middle Aged , Prediabetic State/genetics , Prediabetic State/metabolism , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Stress, Physiological , Vaccination/statistics & numerical data
7.
J Am Chem Soc ; 146(30): 20972-20981, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39041456

ABSTRACT

Catalyst-free and reversible step-growth Diels-Alder (DA) polymerization has a wide range of applications in polymer synthesis and is a promising method for fabricating recyclable thermoplastics. The effectiveness of polymerization and depolymerization relies on the chemical building blocks, often utilizing furan as the diene and maleimide as the dienophile. Compared to the traditional diene-dienophile or two-component approach that requires precise stoichiometry, cyclopentadiene (Cp) can serve dual roles via self-dimerization. This internally balanced platform offers a route to access high-molecular-weight polymers and a dynamic handle for polymer recycling, which has yet to be explored. Herein, through a reactivity investigation of different telechelic Cp derivatives, the uncontrolled cross-linking of Cp was addressed, revealing the first successful DA homopolymerization. To demonstrate the generality of our methodology, we synthesized and characterized six Cp homopolymers with backbones derived from common thermoplastics, such as poly(dimethylsiloxane), hydrogenated polybutadiene, and ethylene phthalate. Among these materials, the hydrogenated polybutadiene-Cp analog can be thermally depolymerized (Mn = 68 to 23 kDa) and repolymerized to the parent polymer (Mn = 68 kDa) under solvent- and catalyst-free conditions. This process was repeated over three cycles without intermediate purification, confirming the efficient thermo-selective recyclability. The varied degradable properties of the other four Cp-incorporated thermoplastics were also examined. Overall, this work provides a general methodology for accessing a new class of reversible homopolymers, potentially expanding the design and construction of sustainable thermoplastics.

8.
Cancer ; 130(8): 1303-1315, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38103206

ABSTRACT

BACKGROUND: Understanding cancer treatment-related cardiovascular (CV) events is important for cancer care; however, comprehensive evaluation of CV events in patients with lung cancer is limited. This study aimed to assess the cumulative incidence and associated risks of various CV event types in patients with non-small cell lung cancer (NSCLC). METHODS: A total of 7868 individuals aged 40 years and older, recently diagnosed with NSCLC (2007-2018), were assessed with data obtained from the National Cancer Center, Korea. This study included nine types of CV events. A 2-year cumulative incidence function (CIF) of CV events was estimated, with death as a competing event. The associated risks were assessed by subdistribution hazard ratio (sHR) in the Fine-Gray competing risks model. RESULTS: CV events were observed in 7.8% of patients with NSCLC, with the most frequently observed types being atrial fibrillation and flutter (AF) (2.7%), venous thromboembolic disease (2.0%), and cerebrovascular disease (CeVD) (1.5%). Overall, all CV events were highest in the group treated with systemic therapy (CIF, 10.6%; 95% confidence interval [CI], 9.5%-11.8%), followed by those treated with surgery (CIF, 10.0%; 95% CI, 8.6%-11.6%); the incidence of AF (CIF, 5.7%; 95% CI, 4.6%-7.0%) was highest in patients treated with surgery. Individuals treated with systemic therapy were found to exhibit a higher CeVD risk than those treated with surgery (sHR, 4.12; 95% CI, 1.66-10.23). Among the patients who underwent surgery, those with lobectomy and pneumonectomy had a higher AF risk (vs. wedge resection/segmentectomy; sHR, 7.79; 95% CI, 1.87-32.42; sHR, 8.10; 95% CI, 1.60-40.89). CONCLUSIONS: These findings revealed treatment-related CV event risks in patients with NSCLC, which suggests that the risk of AF in surgery and CeVD in systemic therapy should be paid more attention to achieve a better prognosis and improve cancer survivorship outcomes. PLAIN LANGUAGE SUMMARY: Atrial fibrillation and flutter (AF) is the most common cardiovascular event, particularly at a high risk in patients with non-small cell lung cancer (NSCLC) undergoing surgery. Patients receiving surgery with poor performance status, diagnosed with regional stage, and undergoing lobectomy or pneumonectomy are at a high risk of AF. Systemic/radiotherapy is associated with cerebrovascular and ischemic heart disease in patients with NSCLC.


Subject(s)
Atrial Fibrillation , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adult , Middle Aged , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/therapy , Lung Neoplasms/radiotherapy , Atrial Fibrillation/epidemiology , Atrial Fibrillation/surgery , Prognosis , Incidence , Pneumonectomy
9.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38466092

ABSTRACT

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Tuberculosis, Multidrug-Resistant , Adult , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/cerebrospinal fluid , Mycobacterium tuberculosis/genetics , Pyrazinamide , Sensitivity and Specificity , Rifampin/pharmacology , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology , Cerebrospinal Fluid , Microbial Sensitivity Tests
10.
J Transl Med ; 22(1): 498, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796431

ABSTRACT

OBJECTIVE: The aim of the present pilot study was to assess the effectiveness of the platelet-rich fibrin (PRF) apical barrier for the placement of MTA for the treatment of teeth with periapical lesions and open apices. METHODS: A total of thirty teeth on twenty-eight patients with open apices and periapical periodontitis were enrolled and divided into two groups in the present pilot study. In the PRF group (fourteen teeth in thirteen patients), nonsurgical endodontic treatment was performed using PRF as an apical matrix, after which the apical plug of the MTA was created. For the non-PRF group (fourteen teeth in fourteen patients), nonsurgical endodontic therapy was performed using only the MTA for an apical plug with no further periapical intervention. Clinical findings and periapical digital radiographs were used for evaluating the healing progress after periodic follow-ups of 1, 3, 6, and 9 months. The horizontal dimension of the periapical lesion was gauged, and the changes in the dimensions were recorded each time. The Friedman test, Dunn-Bonferroni post hoc correction, and Mann-Whitney U test were used for statistical analysis, with P < 0.05 serving as the threshold for determining statistical significance. RESULTS: All patients in both groups in the present pilot study had no clinical symptoms after 1 month, with a significant reduction in the periapical lesion after periodic appointments. The lesion width of the PRF group was significantly smaller than that of the non-PRF group in the sixth and ninth month after treatment. CONCLUSIONS: PRF is a promising apical barrier matrix when combined with MTA for the treatment of teeth with open apices and periapical periodontitis. Small number of study subjects and the short time of follow-up period limit the generalizability of these results. TRIAL REGISTRATION: TCTR, TCTR20221109006. Registered 09 November 2022 - Retrospectively registered, https://www.thaiclinicaltrials.org/show/TCTR20221109006 .


Subject(s)
Aluminum Compounds , Calcium Compounds , Platelet-Rich Fibrin , Silicates , Tooth Apex , Humans , Pilot Projects , Platelet-Rich Fibrin/metabolism , Female , Male , Aluminum Compounds/therapeutic use , Silicates/therapeutic use , Calcium Compounds/therapeutic use , Adult , Tooth Apex/pathology , Tooth Apex/diagnostic imaging , Drug Combinations , Middle Aged , Oxides/therapeutic use , Periapical Periodontitis/therapy , Periapical Periodontitis/diagnostic imaging
11.
BMC Microbiol ; 24(1): 85, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468236

ABSTRACT

Antimicrobial peptides, such as bacteriocin, produced by probiotics have become a promising novel class of therapeutic agents for treating infectious diseases. Selected lactic acid bacteria (LAB) isolated from fermented foods with probiotic potential were evaluated for various tests, including exopolysaccharide production, antibiotic susceptibility, acid and bile tolerance, antibacterial activity, and cell adhesion and cytotoxicity to gastric cell lines. Six selected LAB strains maintained their high viability under gastrointestinal conditions, produced high exopolysaccharides, showed no or less cytotoxicity, and adhered successfully to gastric cells. Furthermore, three strains, Weissella confusa CYLB30, Lactiplantibacillus plantarum CYLB47, and Limosilactobacillus fermentum CYLB55, demonstrated a strong antibacterial effect against drug-resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica serovar Choleraesuis, Enterococcus faecium, and Staphylococcus aureus. Whole genome sequencing was performed on these three strains using the Nanopore platform; then, the results showed that all three strains did not harbor genes related to toxins, superantigens, and acquired antimicrobial resistance, in their genome. The bacteriocin gene cluster was found in CYLB47 genome, but not in CYLB30 and CYLB55 genomes. In SDS-PAGE, the extract of CYLB30 and CYLB47 bacteriocin-like inhibitory substance (BLIS) yielded a single band with a size of less than 10 kDa. These BLIS inhibited the growth and biofilm formation of drug-resistant P. aeruginosa and methicillin-resistant S. aureus (MRSA), causing membrane disruption and inhibiting adhesion ability to human skin HaCaT cells. Moreover, CYLB30 and CYLB47 BLIS rescued the larvae after being infected with P. aeruginosa and MRSA infections. In conclusion, CYLB30 and CYLB47 BLIS may be potential alternative treatment for multidrug-resistant bacteria infections.


Subject(s)
Bacteriocins , Fermented Foods , Lactobacillales , Methicillin-Resistant Staphylococcus aureus , Probiotics , Humans , Bacteriocins/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Probiotics/metabolism
12.
Epilepsia ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780375

ABSTRACT

OBJECTIVE: This study was undertaken to develop and evaluate a machine learning-based algorithm for the detection of focal to bilateral tonic-clonic seizures (FBTCS) using a novel multimodal connected shirt. METHODS: We prospectively recruited patients with epilepsy admitted to our epilepsy monitoring unit and asked them to wear the connected shirt while under simultaneous video-electroencephalographic monitoring. Electrocardiographic (ECG) and accelerometric (ACC) signals recorded with the connected shirt were used for the development of the seizure detection algorithm. First, we used a sliding window to extract linear and nonlinear features from both ECG and ACC signals. Then, we trained an extreme gradient boosting algorithm (XGBoost) to detect FBTCS according to seizure onset and offset annotated by three board-certified epileptologists. Finally, we applied a postprocessing step to regularize the classification output. A patientwise nested cross-validation was implemented to evaluate the performances in terms of sensitivity, false alarm rate (FAR), time in false warning (TiW), detection latency, and receiver operating characteristic area under the curve (ROC-AUC). RESULTS: We recorded 66 FBTCS from 42 patients who wore the connected shirt for a total of 8067 continuous hours. The XGBoost algorithm reached a sensitivity of 84.8% (56/66 seizures), with a median FAR of .55/24 h and a median TiW of 10 s/alarm. ROC-AUC was .90 (95% confidence interval = .88-.91). Median detection latency from the time of progression to the bilateral tonic-clonic phase was 25.5 s. SIGNIFICANCE: The novel connected shirt allowed accurate detection of FBTCS with a low false alarm rate in a hospital setting. Prospective studies in a residential setting with a real-time and online seizure detection algorithm are required to validate the performance and usability of this device.

13.
BMC Infect Dis ; 24(1): 622, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910264

ABSTRACT

BACKGROUND: Respiratory infections have long been recognized as a primary cause of acute exacerbation of chronic obstructive pulmonary disease (AE-COPD). Additionally, the emergence of antimicrobial resistance has led to an urgent and critical situation in developing countries, including Vietnam. This study aimed to investigate the distribution and antimicrobial resistance of bacteria in patients with AE-COPD using both conventional culture and multiplex real-time PCR. Additionally, associations between clinical characteristics and indicators of pneumonia in these patients were examined. METHODS: This cross-sectional prospective study included 92 AE-COPD patients with pneumonia and 46 without pneumonia. Sputum specimens were cultured and examined for bacterial identification, and antimicrobial susceptibility was determined for each isolate. Multiplex real-time PCR was also performed to detect ten bacteria and seven viruses. RESULTS: The detection rates of pathogens in AE-COPD patients with pneumonia were 92.39%, compared to 86.96% in those without pneumonia. A total of 26 pathogenic species were identified, showing no significant difference in distribution between the two groups. The predominant bacteria included Klebsiella pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae, followed by Acinetobacter baumannii and Streptococcus mitis. There was a slight difference in antibiotic resistance between bacteria isolated from two groups. The frequency of H. influenzae was notably greater in AE-COPD patients who experienced respiratory failure (21.92%) than in those who did not (9.23%). S. pneumoniae was more common in patients with stage I (44.44%) or IV (36.36%) COPD than in patients with stage II (17.39%) or III (9.72%) disease. ROC curve analysis revealed that C-reactive protein (CRP) levels could distinguish patients with AE-COPD with and without pneumonia (AUC = 0.78). CONCLUSION: Gram-negative bacteria still play a key role in the etiology of AE-COPD patients, regardless of the presence of pneumonia. This study provides updated evidence for the epidemiology of AE-COPD pathogens and the appropriate selection of antimicrobial agents in Vietnam.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Cross-Sectional Studies , Vietnam/epidemiology , Prospective Studies , Male , Female , Aged , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/epidemiology , Microbial Sensitivity Tests , Sputum/microbiology , Aged, 80 and over , Pneumonia/microbiology , Pneumonia/drug therapy , Pneumonia/epidemiology
14.
BMC Infect Dis ; 24(1): 164, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326753

ABSTRACT

BACKGROUND: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pneumoniae and Staphylococcus aureus are major bacterial causes of lower respiratory tract infections (LRTIs) globally, leading to substantial morbidity and mortality. The rapid increase of antimicrobial resistance (AMR) in these pathogens poses significant challenges for their effective antibiotic therapy. In low-resourced settings, patients with LRTIs are prescribed antibiotics empirically while awaiting several days for culture results. Rapid pathogen and AMR gene detection could prompt optimal antibiotic use and improve outcomes. METHODS: Here, we developed multiplex quantitative real-time PCR using EvaGreen dye and melting curve analysis to rapidly identify six major pathogens and fourteen AMR genes directly from respiratory samples. The reproducibility, linearity, limit of detection (LOD) of real-time PCR assays for pathogen detection were evaluated using DNA control mixes and spiked tracheal aspirate. The performance of RT-PCR assays was subsequently compared with the gold standard, conventional culture on 50 tracheal aspirate and sputum specimens of ICU patients. RESULTS: The sensitivity of RT-PCR assays was 100% for K. pneumoniae, A. baumannii, P. aeruginosa, E. coli and 63.6% for S. aureus and the specificity ranged from 87.5% to 97.6%. The kappa correlation values of all pathogens between the two methods varied from 0.63 to 0.95. The limit of detection of target bacteria was 1600 CFU/ml. The quantitative results from the PCR assays demonstrated 100% concordance with quantitative culture of tracheal aspirates. Compared to culture, PCR assays exhibited higher sensitivity in detecting mixed infections and S. pneumoniae. There was a high level of concordance between the detection of AMR gene and AMR phenotype in single infections. CONCLUSIONS: Our multiplex quantitative RT-PCR assays are fast and simple, but sensitive and specific in detecting six bacterial pathogens of LRTIs and their antimicrobial resistance genes and should be further evaluated for clinical utility.


Subject(s)
Anti-Bacterial Agents , Respiratory Tract Infections , Humans , Real-Time Polymerase Chain Reaction/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli/genetics , Staphylococcus aureus/genetics , Reproducibility of Results , Multiplex Polymerase Chain Reaction/methods , Drug Resistance, Bacterial , Bacteria/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Streptococcus pneumoniae/genetics , Klebsiella pneumoniae/genetics
15.
J Pept Sci ; 30(6): e3570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38317283

ABSTRACT

Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.


Subject(s)
Agriculture , Cyclotides , Cyclotides/chemistry , Agriculture/methods , Biological Control Agents/chemistry , Pesticides/chemistry , Humans
16.
J Fluoresc ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280054

ABSTRACT

SiO2@Ag nanocomposite (NC) has been synthesized by the chemical reduction and StÓ§ber method for Metal-enhanced fluorescence (MEF) of Rhodmine 6G (R6G) and Surface-enhanced Raman spectroscopy (SERS) of Malachite green (MG). As-synthesized SiO2@Ag NC indicated SiO2 nanosphere (NS) and Ag nanoparticle (NP) morphologies. The SiO2@Ag NC was high quality with a well-defined crystallite phase with average sizes of 24 nm and 132 nm for Ag NP and SiO2 NC, respectively. By using SiO2@Ag NC, the photoluminescence (PL) intensity of the R6G (at 59.17 ppm) was increased approximately 133 times. The SERS of the MG (at 1.0 ppm) with SiO2@Ag NC as substrate clearly observed vibrational modes in MG dye at 798, 916, 1172, 1394, and 1616 cm-1. As a result, the SERS enhancement factor (EFSERS) at 1172 cm-1 obtained 6.3 × 106. This initial study points to the potential of SiO2@Ag NC as a promising material for MEF and SERS substrates to detect dyes at low concentrations.

17.
Phys Chem Chem Phys ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39081057

ABSTRACT

The smallest triple ring tube-like gold clusters M2@Au15q with M = Mo, W and q = 1, 0, -1 are reported for the first time. Incorporation of an M2 dimer results in a remarkable modification of both atomic and electronic structures of the gold host. While the bare Au15 cluster exhibits a 3D cage shape, the doubly doped clusters M2@Au15 in all charge states are found to prefer a tubular form composed of three five-membered Au rings in an anti-prism arrangement and stabilized by an M2 unit placed inside the tube-like Au15 gold framework. The equilibrium geometry of both M2@Au15 and M2@Au15- is not much modified upon electron detachment from or attachment to their pure gold counterpart. The anion M2@Au15- with 28 itinerant electrons establishes an electron shell configuration of 1S21P61D102S21F8, in which the 1F shell splits into four different sub-levels. These stable clusters are thus not magic. Computed results on the first and second hyper-polarizability parameters of the doped clusters show a strong dependence on the charge. Overall, the neutral M2@Au15 is found to exhibit a particularly strong nonlinear optical (NLO) response. These clusters can also be extended to 1D nanowires, providing helpful guidance for the design of novel gold-based nanowires with rich optoelectronic properties.

18.
Environ Res ; 258: 119396, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871276

ABSTRACT

Adsorption of essential amino acid, Tryptophan (Tryp) on synthesized gibbsite nanoparticles and their applications in eliminating of antibiotic ciprofloxacin (CFX) and bacteria Escherichia coli (E. coli) in aqueous solution. Nano-gibbsite which was successfully fabricated, was characterized by XRD, TEM-SAED, FT-IR, SEM-EDX and zeta potential measurements. The selected parameters for Tryp adsorption on nano-gibbsite to form biomaterial, Tryp/gibbsite were pH 11, gibbsite dosage 20 mg/mL and 1400 mg/L Tryp. The optimum conditions for CFX removal using Tryp/gibbsite were adsorption time 60 min, pH 5, and 20 mg/mL Tryp/gibbsite dosage. The CFX removal significantly raised from 63 to 90% when using Tryp/gibbsite. The Freundlich and pseudo-second-order models achieved the best fits for CFX adsorption isotherm and kinetic on Tryp/gibbsite, respectively. The amount of CFX increased with increasing ionic strength, suggesting that both electrostatic and non-electrostatic interactions were important. After four reused time, CFX removal was greater than 66%, demonstrating that Tryp/gibbsite is reusable with high performance in removing CFX. The application in bacterial activity in term of E. coli reached greater than 98% that was the best material for bacteria inactivation. The present study reveals that Tryp/gibbsite is an excellent bio-material for removing CFX and E. coli.

19.
Eur J Pediatr ; 183(8): 3377-3388, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38755309

ABSTRACT

Evidence-based literature recognizes that the different degrees of agreement between a child self-report and a proxy-report depend on the characteristics of the domains, the child's age and illness, the proxy's own perspective on QoL, and family attendance during the child's hospitalization. This study aims to determine the degree of agreement between proxy-reports and child self-reports on quality of life (QoL) for children with hematologic malignancy ranging in age from 5 to 18 years who are undergoing treatment. We retrieved clinical QoL data from a study titled "Dynamic change in QoL for Vietnamese children with hematologic malignancy" from April 2021 to December 2022. To evaluate the magnitude of agreement between self-reports and proxy-reports, intraclass correlation coefficients (ICCs) for 259 pairs of measurements were quantified. Using independent t tests, the mean differences between self-reports and proxy-reports were tested. Moderate agreement was consistent through all age groups for five subscales, including physical, psychosocial, pain, nausea, and procedural anxiety (ICCs ranged from 0.53 to 0.74). The weakest agreement appeared in two groups, subjects aged 5-7 years and 13-18 years on six domains (school, treatment anxiety, worry, cognitive problems, perceived physical appearance, and communication) (-0.01 to 0.49). Child self-rating was consistently higher than that of proxies for the physical, emotional, and nausea domains among children aged 5-7 years and for procedural anxiety, treatment anxiety, and cognitive problems among children aged 8-12 years.    Conclusion: The agreement level of self-reports and proxy-reports was differently distributed by child age and the PedsQL domains. The proxy children agreement on QoL among children with hematologic malignancy was divergent according to the different age groups, which could potentially be explained by proxy-child bonding at different stages of childhood development. Our recommendation for future studies is to explore children's age as a potential factor influencing proxy agreement on QoL among children with cancer. What is Known: • Children and their proxies may think differently about quality of life (QoL). • Comparing two sources of data (i.e., child and proxy) on aspects of QoL can help identify the discrepancies between children's perceptions of their QoL and their parents' perceptions. This can be useful in terms of identifying potential areas for improvement or concern and may also be helpful in making decisions about treatment and care. What is New: • Our study results demonstrated that proxies who comprised children aged 5-7 years or 13-18 years reported differently among domains that cannot be expressed verbally or with body language, including cognitive problems, perceived physical appearance, and communication. • Children generally perceived their QoL to be better than their proxies. Therefore, a more comprehensive understanding of children's QoL may require the consideration of multiple sources of data from various perspectives.


Subject(s)
Hematologic Neoplasms , Proxy , Quality of Life , Self Report , Humans , Child , Adolescent , Male , Female , Proxy/psychology , Child, Preschool , Hematologic Neoplasms/psychology , Hematologic Neoplasms/therapy , Parents/psychology
20.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1777-1783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38244084

ABSTRACT

PURPOSE: To investigate the relationship between the macular values of fractal dimension (FD) and lacunarity (LAC) on optical coherence tomography angiography (OCTA) images and the presence of peripheral retina non-perfusion areas (NPAs) on fluorescein angiography (FA) in patients with treatment-naïve diabetic macular edema (DME). METHODS: Fifty patients with treatment-naïve DME underwent a full ophthalmic examination, including best-corrected visual acuity measurement, FA, spectral-domain optical coherence tomography, and OCTA. Specifically, FA was performed to detect the presence of retinal NPAs, whereas fractal OCTA analysis was used to determine macular FD and LAC values at the level of the superficial and deep capillary plexus (SCP and DCP). FA montage frames of the posterior pole and peripheral retina, as well as macular OCTA slabs of the SCP and DCP, were obtained. RESULTS: Thirty (60%) eyes with FA evidence of peripheral retinal NPAs in at least one quadrant showed significantly lower FD and higher LAC in both SCP and DCP, when compared with eyes presenting a well-perfused peripheral retina. Furthermore, macular FD and LAC values were found to be significantly associated with the extent of retinal NPAs. CONCLUSIONS: Macular FD and LAC of both SCP and DCP seem to be strongly associated with the extent of peripheral retinal NPAs, thus suggesting that may be useful predictive biomarkers of peripheral ischemia in treatment-naïve DME eyes.


Subject(s)
Diabetic Retinopathy , Fluorescein Angiography , Fundus Oculi , Ischemia , Macular Edema , Retinal Vessels , Tomography, Optical Coherence , Visual Acuity , Humans , Tomography, Optical Coherence/methods , Macular Edema/diagnosis , Macular Edema/etiology , Macular Edema/metabolism , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/physiopathology , Fluorescein Angiography/methods , Male , Female , Retinal Vessels/diagnostic imaging , Ischemia/diagnosis , Ischemia/physiopathology , Ischemia/metabolism , Middle Aged , Macula Lutea , Aged , Biomarkers/metabolism , Fovea Centralis , Follow-Up Studies , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL