Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Publication year range
1.
Cell ; 169(5): 862-877.e17, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28502771

ABSTRACT

Herpes zoster (shingles) causes significant morbidity in immune compromised hosts and older adults. Whereas a vaccine is available for prevention of shingles, its efficacy declines with age. To help to understand the mechanisms driving vaccinal responses, we constructed a multiscale, multifactorial response network (MMRN) of immunity in healthy young and older adults immunized with the live attenuated shingles vaccine Zostavax. Vaccination induces robust antigen-specific antibody, plasmablasts, and CD4+ T cells yet limited CD8+ T cell and antiviral responses. The MMRN reveals striking associations between orthogonal datasets, such as transcriptomic and metabolomics signatures, cell populations, and cytokine levels, and identifies immune and metabolic correlates of vaccine immunity. Networks associated with inositol phosphate, glycerophospholipids, and sterol metabolism are tightly coupled with immunity. Critically, the sterol regulatory binding protein 1 and its targets are key integrators of antibody and T follicular cell responses. Our approach is broadly applicable to study human immunity and can help to identify predictors of efficacy as well as mechanisms controlling immunity to vaccination.


Subject(s)
Herpes Zoster Vaccine/immunology , Adaptive Immunity , Adult , Aged , Aging , Antibody Formation , CD4-Positive T-Lymphocytes/immunology , Female , Flow Cytometry , Gene Expression Profiling , Gene Regulatory Networks , Humans , Inositol Phosphates/immunology , Longitudinal Studies , Male , Metabolomics , Middle Aged , Sex Characteristics , Sterols/metabolism , Viral Load
2.
Toxicol Appl Pharmacol ; 483: 116806, 2024 02.
Article in English | MEDLINE | ID: mdl-38195004

ABSTRACT

Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-ß1 and ß3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFß1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFß1-dependent proteins.


Subject(s)
Cadmium , Matrix Metalloproteinase 2 , Humans , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , Matrix Metalloproteinase 2/metabolism , Lipoylation , Lung , Signal Transduction , Fibrosis , Fibroblasts , Transforming Growth Factor beta1/metabolism
3.
Metabolomics ; 20(1): 6, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095785

ABSTRACT

INTRODUCTION: Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio. METHOD: We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways. RESULTS: Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds. CONCLUSION: In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Humans , Pregnancy , Infant, Newborn , Female , Polycyclic Aromatic Hydrocarbons/urine , Cross-Sectional Studies , Metabolomics , Metabolome , Amino Acids/metabolism
4.
J Pediatr Gastroenterol Nutr ; 76(3): 355-363, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36728821

ABSTRACT

BACKGROUND/OBJECTIVES: Eosinophilic esophagitis (EoE) is an inflammatory disease of unclear etiology. The aim of this study was to use untargeted plasma metabolomics to identify metabolic pathway alterations associated with EoE to better understand the pathophysiology. METHODS: This prospective, case-control study included 72 children, aged 1-17 years, undergoing clinically indicated upper endoscopy (14 diagnosed with EoE and 58 controls). Fasting plasma samples were analyzed for metabolomics by high-resolution dual-chromatography mass spectrometry. Analysis was performed on sex-matched groups at a 2:1 ratio. Significant differences among the plasma metabolite features between children with and without EoE were determined using multivariate regression analysis and were annotated with a network-based algorithm. Subsequent pathway enrichment analysis was performed. RESULTS: Patients with EoE had a higher proportion of atopic disease (85.7% vs 50%, P = 0.019) and any allergies (100% vs 57.1%, P = 0.0005). Analysis of the dual chromatography features resulted in a total of 918 metabolites that differentiated EoE and controls. Glycerophospholipid metabolism was significantly enriched with the greatest number of differentiating metabolites and overall pathway enrichment ( P < 0.01). Multiple amino and fatty acid pathways including linoleic acid were also enriched, as well as pyridoxine metabolism ( P < 0.01). CONCLUSIONS: In this pilot study, we found differences in metabolites involved in glycerophospholipid and inflammation pathways in pediatric patients with EoE using untargeted metabolomics, as well as overlap with amino acid metabolome alterations found in atopic disease.


Subject(s)
Eosinophilic Esophagitis , Humans , Child , Eosinophilic Esophagitis/diagnosis , Prospective Studies , Case-Control Studies , Pilot Projects , Metabolomics
5.
Environ Sci Technol ; 56(10): 6525-6536, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35476389

ABSTRACT

In the omics era, saliva, a filtrate of blood, may serve as an alternative, noninvasive biospecimen to blood, although its use for specific metabolomic applications has not been fully evaluated. We demonstrated that the saliva metabolome may provide sensitive measures of traffic-related air pollution (TRAP) and associated biological responses via high-resolution, longitudinal metabolomics profiling. We collected 167 pairs of saliva and plasma samples from a cohort of 53 college student participants and measured corresponding indoor and outdoor concentrations of six air pollutants for the dormitories where the students lived. Grand correlation between common metabolic features in saliva and plasma was moderate to high, indicating a relatively consistent association between saliva and blood metabolites across subjects. Although saliva was less associated with TRAP compared to plasma, 25 biological pathways associated with TRAP were detected via saliva and accounted for 69% of those detected via plasma. Given the slightly higher feature reproducibility found in saliva, these findings provide some indication that the saliva metabolome offers a sensitive and practical alternative to blood for characterizing individual biological responses to environmental exposures.


Subject(s)
Air Pollutants , Air Pollution , Traffic-Related Pollution , Air Pollutants/analysis , Air Pollution/analysis , Humans , Metabolome , Metabolomics , Reproducibility of Results , Saliva/chemistry
6.
Anal Chem ; 92(13): 8836-8844, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32490663

ABSTRACT

Reference standardization was developed to address quantification and harmonization challenges for high-resolution metabolomics (HRM) data collected across different studies or analytical methods. Reference standardization relies on the concurrent analysis of calibrated pooled reference samples at predefined intervals and enables a single-step batch correction and quantification for high-throughput metabolomics. Here, we provide quantitative measures of approximately 200 metabolites for each of three pooled reference materials (220 metabolites for Qstd3, 211 metabolites for CHEAR, 204 metabolites for NIST1950) and show application of this approach for quantification supports harmonization of metabolomics data collected from 3677 human samples in 17 separate studies analyzed by two complementary HRM methods over a 17-month period. The results establish reference standardization as a method suitable for harmonizing large-scale metabolomics data and extending capabilities to quantify large numbers of known and unidentified metabolites detected by high-resolution mass spectrometry methods.


Subject(s)
Metabolome , Metabolomics/standards , Chromatography, High Pressure Liquid , Humans , Hydrophobic and Hydrophilic Interactions , Kynurenine/analysis , Kynurenine/metabolism , Kynurenine/standards , Mass Spectrometry , Metabolomics/methods , Reference Standards , Reproducibility of Results , Tryptophan/analysis , Tryptophan/metabolism , Tryptophan/standards
7.
Toxicol Appl Pharmacol ; 363: 122-130, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30521819

ABSTRACT

Pregnant women with epilepsy (PWWE) require continuous anti-epileptic drug (AED) treatment to avoid risk to themselves and fetal risks secondary to maternal seizures, resulting in prolonged AED exposure to the developing embryo and fetus. The objectives of this study were to determine whether high-resolution metabolomics is able to link the metabolite profile of PWWE receiving lamotrigine or levetiracetam for seizure control to associated pharmacodynamic (PD) biological responses. Untargeted metabolomic analysis of plasma obtained from 82 PWWE was completed using high-resolution mass spectrometry. Biological alterations due to lamotrigine or levetiracetam monotherapy were determined by a metabolome-wide association study that compared patients taking either drug to those who did not require AED treatment. Metabolic changes associated with AED use were then evaluated by testing for drug-dose associated metabolic variations and pathway enrichment. AED therapy resulted in drug-associated metabolic profiles recognizable within maternal plasma. Both the parent compounds and major metabolites were detected, and each AED was correlated with other metabolic features and pathways. Changes in metabolites and metabolic pathways important to maternal health and linked to fetal neurodevelopment were detected for both drugs, including changes in one­carbon metabolism, neurotransmitter biosynthesis and steroid metabolism. In addition, decreased levels of 5-methyltetrahydrofolate and tetrahydrofolate were detected in women taking lamotrigine, which is consistent with recent findings showing increased risk of autism spectrum disorder traits in PWWE using AED. These results represent a first step in development of pharmacometabolomic framework with potential to detect adverse AED-related metabolic changes during pregnancy.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy/drug therapy , Fetus/metabolism , Metabolome/drug effects , Pregnancy Complications/drug therapy , Adult , Anticonvulsants/therapeutic use , Carbon/metabolism , Epilepsy/metabolism , Female , Fetus/drug effects , Folic Acid/metabolism , Humans , Lamotrigine/pharmacology , Lamotrigine/therapeutic use , Levetiracetam/pharmacology , Levetiracetam/therapeutic use , Metabolic Networks and Pathways/drug effects , Metabolomics , Neurotransmitter Agents/biosynthesis , Pregnancy , Pregnancy Complications/metabolism , Prospective Studies , Steroids/metabolism , Treatment Outcome
8.
J Inherit Metab Dis ; 42(2): 254-263, 2019 03.
Article in English | MEDLINE | ID: mdl-30667068

ABSTRACT

Classic galactosemia (CG) is an autosomal recessive disorder that impacts close to 1/50000 live births in the United States, with varying prevalence in other countries. Following exposure to milk, which contains high levels of galactose, affected infants may experience rapid onset and progression of potentially lethal symptoms. With the benefit of early diagnosis, generally by newborn screening, and immediate and lifelong dietary restriction of galactose, the acute sequelae of disease can be prevented or resolved. However, long-term complications are common, and despite many decades of research, the bases of these complications remain unexplained. As a step toward defining the underlying pathophysiology of long-term outcomes in CG, we applied an untargeted metabolomic approach with mass spectrometry and dual liquid chromatography, comparing thousands of small molecules in plasma samples from 183 patients and 31 controls. All patients were on galactose-restricted diets. Using both univariate and multivariate statistical methods, we identified 252 differentially abundant features from anion exchange chromatography and 167 differentially abundant features from C18 chromatography. Mapping these discriminatory features to putative metabolites and biochemical pathways revealed 14 significantly perturbed pathways; these included multiple redox, amino acid, and mitochondrial pathways, among others. Finally, we tested whether any discriminatory features also distinguished cases with mild vs more severe long-term outcomes and found multiple candidates, of which one achieved false discovery rate-adjusted q < 0.1. These results extend substantially from prior targeted studies of metabolic perturbation in CG and offer a new approach to identifying candidate modifiers and targets for intervention.


Subject(s)
Galactose/metabolism , Galactosemias/diagnosis , Metabolomics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Chromatography, Liquid , Female , Galactosemias/metabolism , Humans , Linear Models , Male , Young Adult
9.
Am J Primatol ; 81(2): e22944, 2019 02.
Article in English | MEDLINE | ID: mdl-30585652

ABSTRACT

Recently, the common marmoset has been proposed as a non-human primate model of aging. Their short lifespan coupled with pathologies that are similar to humans make them an ideal model to understand the genetic, metabolic, and environmental factors that influence aging and longevity. However, many of the underlying physiological changes that occur with age in the marmoset are unknown. Here, we attempt to determine if individual metabolites are predictive of future death and to recapitulate past metabolomic results after a change in environment (move across the country) was imposed on a colony of marmosets. We first determined that low levels of tryptophan metabolism metabolites were associated with risk of death in a 2-year follow-up in the animals, suggesting these metabolites may be used as future biomarkers of mortality. We also discovered that betaine metabolism and methionine metabolism are associated with aging regardless of environment for the animals, or of metabolomic assay technique. These two metabolic pathways are therefore of particular interest to examine as future targets for health and lifespan extending interventions. Many of the pathways associated with age in our first study of marmoset metabolomics were not found to have significant age effects in our second study, suggesting more work is needed to understand the reproducibility of large scale metabolomic studies in mammalian models. Overall, we were able to show that while several metabolomics markers show promise in understanding health and lifespan relationships with aging, it is possible that choice of technique for assay and reproducibility in these types of studies are still issues that need to be examined further.


Subject(s)
Biomarkers/blood , Callithrix/metabolism , Metabolome , Mortality , Aging , Animal Husbandry , Animals , Betaine/metabolism , Callithrix/blood , Female , Male , Metabolome/physiology , Methionine/metabolism , Tryptophan/metabolism
10.
J Stroke Cerebrovasc Dis ; 28(12): 104453, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31668688

ABSTRACT

BACKGROUND: Understanding the metabolic response to exercise may aid in optimizing stroke management. Therefore, the purpose of this pilot study was to evaluate plasma metabolomic profiles in chronic stroke survivors following aerobic exercise training. METHODS: Participants (age: 62 ± 1 years, body mass index: 31 ± 1 kg/m2, mean ± standard error of the mean) were randomized to 6 months of treadmill exercise (N = 17) or whole-body stretching (N = 8) with preintervention and postintervention measurement of aerobic capacity (VO2peak). Linear models for microarray data expression analysis was performed to determine metabolic changes over time, and Mummichog was used for pathway enrichment analysis following analysis of plasma samples by high-performance liquid chromatography coupled to ultrahigh resolution mass spectrometry. RESULTS: VO2peak change was greater following exercise than stretching (18.9% versus -.2%; P < .01). Pathway enrichment analysis of differentially expressed metabolites results showed significant enrichment in 4 pathways following treadmill exercise, 3 of which (heparan-, chondroitin-, keratan-sulfate degradation) involved connective tissue metabolism and the fourth involve lipid signaling (linoleate metabolism). More pathways were altered in pre and post comparisons of stretching, including branched-chain amino acid, tryptophan, tyrosine, and urea cycle, which could indicate loss of lean body mass. CONCLUSIONS: These preliminary data show different metabolic changes due to treadmill training and stretching in chronic stroke survivors and suggest that in addition to improved aerobic capacity, weight-bearing activity, like walking, could protect against loss of lean body mass. Future studies are needed to examine the relationship between changes in metabolomic profiles to reductions in cardiometabolic risk after treadmill rehabilitation.


Subject(s)
Chromatography, High Pressure Liquid , Energy Metabolism , Exercise Therapy/methods , Metabolomics/methods , Muscle Stretching Exercises , Spectrometry, Mass, Electrospray Ionization , Stroke Rehabilitation/methods , Stroke/therapy , Walking , Baltimore , Biomarkers/blood , Chronic Disease , Female , Georgia , Humans , Male , Middle Aged , Pilot Projects , Stroke/blood , Stroke/diagnosis , Stroke/physiopathology , Time Factors , Treatment Outcome
11.
Anal Chem ; 90(6): 3786-3792, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29425024

ABSTRACT

Interstitial fluid (ISF) surrounds the cells and tissues of the body. Since ISF has molecular components similar to plasma, as well as compounds produced locally in tissues, it may be a valuable source of biomarkers for diagnostics and monitoring. However, there has not been a comprehensive study to determine the metabolite composition of ISF and to compare it to plasma. In this study, the metabolome of suction blister fluid (SBF), which largely consists of ISF, collected from 10 human volunteers was analyzed using untargeted high-resolution metabolomics (HRM). A wide range of metabolites were detected in SBF, including amino acids, lipids, nucleotides, and compounds of exogenous origin. Various systemic and skin-derived metabolite biomarkers were elevated or found uniquely in SBF, and many other metabolites of clinical and physiological significance were well correlated between SBF and plasma. In sum, using untargeted HRM profiling, this study shows that SBF can be a valuable source of information about metabolites relevant to human health.


Subject(s)
Extracellular Fluid/metabolism , Metabolome , Metabolomics/methods , Specimen Handling/methods , Suction/methods , Biomarkers/analysis , Biomarkers/blood , Biomarkers/metabolism , Extracellular Fluid/chemistry , Humans
12.
Int J Med Microbiol ; 307(8): 533-541, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28927849

ABSTRACT

BACKGROUND: Plasmodium vivax is one of the leading causes of malaria worldwide. Infections with this parasite cause diverse clinical manifestations, and recent studies revealed that infections with P. vivax can result in severe and fatal disease. Despite these facts, biological traits of the host response and parasite metabolism during P. vivax malaria are still largely underexplored. Parasitemia is clearly related to progression and severity of malaria caused by P. falciparum, however the effects of parasitemia during infections with P. vivax are not well understood. RESULTS: We conducted an exploratory study using a high-resolution metabolomics platform that uncovered significant associations between parasitemia levels and plasma metabolites from 150 patients with P. vivax malaria. Most plasma metabolites were inversely associated with higher levels of parasitemia. Top predicted metabolites are implicated into pathways of heme and lipid metabolism, which include biliverdin, bilirubin, palmitoylcarnitine, stearoylcarnitine, phosphocholine, glycerophosphocholine, oleic acid and omega-carboxy-trinor-leukotriene B4. CONCLUSIONS: The abundance of several plasma metabolites varies according to the levels of parasitemia in patients with P. vivax malaria. Moreover, our data suggest that the host response and/or parasite survival might be affected by metabolites involved in the degradation of heme and metabolism of several lipids. Importantly, these data highlight metabolic pathways that may serve as targets for the development of new antimalarial compounds.


Subject(s)
Host-Pathogen Interactions , Malaria, Vivax/pathology , Metabolome , Parasitemia/pathology , Adult , Aged , Biological Factors/blood , Female , Heme/metabolism , Humans , Lipid Metabolism , Male , Middle Aged , Plasma/chemistry , Young Adult
13.
J Pediatr ; 172: 14-19.e5, 2016 05.
Article in English | MEDLINE | ID: mdl-26858195

ABSTRACT

OBJECTIVE: To conduct an untargeted, high resolution exploration of metabolic pathways that was altered in association with hepatic steatosis in adolescents. STUDY DESIGN: This prospective, case-control study included 39 Hispanic-American, obese adolescents aged 11-17 years evaluated for hepatic steatosis using magnetic resonance spectroscopy. Of these 39 individuals, 30 had hepatic steatosis ≥5% and 9 were matched controls with hepatic steatosis <5%. Fasting plasma samples were analyzed in triplicate using ultra-high resolution metabolomics on a Thermo Fisher Q Exactive mass spectrometry system, coupled with C18 reverse phase liquid chromatography. Differences in plasma metabolites between adolescents with and without nonalcoholic fatty liver disease (NAFLD) were determined by independent t tests and visualized using Manhattan plots. Untargeted pathway analyses using Mummichog were performed among the significant metabolites to identify pathways that were most dysregulated in NAFLD. RESULTS: The metabolomics analysis yielded 9583 metabolites, and 7711 with 80% presence across all samples remained for statistical testing. Of these, 478 metabolites were associated with the presence of NAFLD compared with the matched controls. Pathway analysis revealed that along with lipid metabolism, several major amino acid pathways were dysregulated in NAFLD, with tyrosine metabolism being the most affected. CONCLUSIONS: Metabolic pathways of several amino acids are significantly disturbed in adolescents with elevated hepatic steatosis. This is a novel finding and suggests that these pathways may be integral in the mechanisms of NAFLD.


Subject(s)
Amino Acids/metabolism , Metabolomics/methods , Non-alcoholic Fatty Liver Disease/metabolism , Adolescent , Case-Control Studies , Child , Female , Humans , Liver/pathology , Magnetic Resonance Spectroscopy , Male , Non-alcoholic Fatty Liver Disease/complications , Obesity/metabolism , Prospective Studies
14.
Curr Dev Nutr ; 8(5): 102144, 2024 May.
Article in English | MEDLINE | ID: mdl-38726027

ABSTRACT

Background: Maternal overweight and obesity has been associated with poor lactation performance including delayed lactogenesis and reduced duration. However, the effect on human milk composition is less well understood. Objectives: We evaluated the relationship of maternal BMI on the human milk metabolome among Guatemalan mothers. Methods: We used data from 75 Guatemalan mothers who participated in the Household Air Pollution Intervention Network trial. Maternal BMI was measured between 9 and <20 weeks of gestation. Milk samples were collected at a single time point using aseptic collection from one breast at 6 mo postpartum and analyzed using high-resolution mass spectrometry. A cross-sectional untargeted high-resolution metabolomics analysis was performed by coupling hydrophilic interaction liquid chromatography (HILIC) and reverse phase C18 chromatography with mass spectrometry. Metabolic features associated with maternal BMI were determined by a metabolome-wide association study (MWAS), adjusting for baseline maternal age, education, and dietary diversity, and perturbations in metabolic pathways were identified by pathway enrichment analysis. Results: The mean age of participants at baseline was 23.62 ± 3.81 y, and mean BMI was 24.27 ± 4.22 kg/m2. Of the total metabolic features detected by HILIC column (19,199 features) and by C18 column (11,594 features), BMI was associated with 1026 HILIC and 500 C18 features. Enriched pathways represented amino acid metabolism, galactose metabolism, and xenobiotic metabolic metabolism. However, no significant features were identified after adjusting for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure (FDRBH < 0.2). Conclusions: Findings from this untargeted MWAS indicate that maternal BMI is associated with metabolic perturbations of galactose metabolism, xenobiotic metabolism, and xenobiotic metabolism by cytochrome p450 and biosynthesis of amino acid pathways. Significant metabolic pathway alterations detected in human milk were associated with energy metabolism-related pathways including carbohydrate and amino acid metabolism.This trial was registered at clinicaltrials.gov as NCT02944682.

15.
Nutrition ; 116: 112160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37566924

ABSTRACT

OBJECTIVES: High-resolution metabolomics enables global assessment of metabolites and molecular pathways underlying physiologic processes, including substrate utilization during the fasted state. The clinical index for substrate utilization, respiratory exchange ratio (RER), is measured via indirect calorimetry. The aim of this pilot study was to use metabolomics to identify metabolic pathways and plasma metabolites associated with substrate utilization in healthy, fasted adults. METHODS: This cross-sectional study included 33 adults (mean age 27.7 ± 4.9 y, mean body mass index 24.8 ± 4 kg/m2). Participants underwent indirect calorimetry to determine resting RER after an overnight fast. Untargeted metabolomics was performed on fasted plasma samples using dual-column liquid chromatography and ultra-high-resolution mass spectrometry. Linear regression and pathway enrichment analyses identified pathways and metabolites associated with substrate utilization measured with indirect calorimetry. RESULTS: RER was significantly associated with 1389 metabolites enriched within 13 metabolic pathways (P < 0.05). Lipid-related findings included general pathways, such as fatty acid activation, and specific pathways, such as C21-steroid hormone biosynthesis and metabolism, butyrate metabolism, and carnitine shuttle. Amino acid pathways included those central to metabolism, such as glucogenic amino acids, and pathways needed to maintain reduction-oxidation reactions, such as methionine and cysteine metabolism. Galactose and pyrimidine metabolism were also associated with RER (all P < 0.05). CONCLUSIONS: The fasting plasma metabolome reflects the diverse macronutrient pathways involved in carbohydrate, amino acid, and lipid metabolism during the fasted state in healthy adults. Future studies should consider the utility of metabolomics to profile individual nutrient requirements and compare findings reported here to clinical populations.


Subject(s)
Amino Acids , Metabolomics , Adult , Humans , Young Adult , Cross-Sectional Studies , Pilot Projects , Metabolomics/methods , Amino Acids/metabolism , Metabolome
16.
Antioxidants (Basel) ; 12(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37107179

ABSTRACT

Antagonistic interaction refers to opposing beneficial and adverse signaling by a single agent. Understanding opposing signaling is important because pathologic outcomes can result from adverse causative agents or the failure of beneficial mechanisms. To test for opposing responses at a systems level, we used a transcriptome-metabolome-wide association study (TMWAS) with the rationale that metabolite changes provide a phenotypic readout of gene expression, and gene expression provides a phenotypic readout of signaling metabolites. We incorporated measures of mitochondrial oxidative stress (mtOx) and oxygen consumption rate (mtOCR) with TMWAS of cells with varied manganese (Mn) concentration and found that adverse neuroinflammatory signaling and fatty acid metabolism were connected to mtOx, while beneficial ion transport and neurotransmitter metabolism were connected to mtOCR. Each community contained opposing transcriptome-metabolome interactions, which were linked to biologic functions. The results show that antagonistic interaction is a generalized cell systems response to mitochondrial ROS signaling.

17.
Environ Int ; 178: 108112, 2023 08.
Article in English | MEDLINE | ID: mdl-37517180

ABSTRACT

Breast cancer is now the most common cancer globally, accounting for 12% of all new annual cancer cases worldwide. Despite epidemiologic studies having established a number of risk factors, knowledge of chemical exposure risks is limited to a relatively small number of chemicals. In this exposome research study, we used non-targeted, high-resolution mass spectrometry of pregnancy cohort biospecimens in the Child Health and Development Studies to test for associations with breast cancer identified via the California Cancer Registry. Second and third trimester archival samples were analyzed from 182 women who subsequently developed breast cancer and 384 randomly selected women who did not develop breast cancer. Environmental chemicals were annotated with the Toxin and Toxin-Target Database for chemical signals that were higher in breast cancer cases and used with an exposome epidemiology analytic framework to identify suspect chemicals and associated metabolic networks. Network and pathway enrichment analyses showed consistent linkage in both second and third trimesters to inflammation pathways, including linoleate, arachidonic acid and prostaglandins, and identified new suspect environmental chemicals associated with breast cancer, i.e., an N-substituted piperidine insecticide and a common commercial product, 2,4-dinitrophenol, linked to variations in amino acid and nucleotide pathways in second trimester and benzo[a]carbazole and a benzoate derivative linked to glycan and amino sugar metabolism in third trimester. The results identify new suspect environmental chemical risk factors for breast cancer and provide an exposome epidemiology framework for discovery of suspect environmental chemicals and potential mechanistic associations with breast cancer.


Subject(s)
Breast Neoplasms , Exposome , Female , Humans , Pregnancy , Amino Acids , Breast Neoplasms/chemically induced , Breast Neoplasms/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Mass Spectrometry/methods
18.
Sci Rep ; 13(1): 1886, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732537

ABSTRACT

During the first 2 years of life, the infant gut microbiome is rapidly developing, and gut bacteria may impact host health through the production of metabolites that can have systemic effects. Thus, the fecal metabolome represents a functional readout of gut bacteria. Despite the important role that fecal metabolites may play in infant health, the development of the infant fecal metabolome has not yet been thoroughly characterized using frequent, repeated sampling during the first 2 years of life. Here, we described the development of the fecal metabolome in a cohort of 101 Latino infants with data collected at 1-, 6-, 12-, 18-, and 24-months of age. We showed that the fecal metabolome is highly conserved across time and highly personalized, with metabolic profiles being largely driven by intra-individual variability. Finally, we also identified several novel metabolites and metabolic pathways that changed significantly with infant age, such as valerobetaine and amino acid metabolism, among others.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Humans , Feces/microbiology , Bacteria , Specimen Handling , RNA, Ribosomal, 16S/analysis
19.
J Biol Chem ; 286(21): 19159-69, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21460217

ABSTRACT

Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4-5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant.


Subject(s)
Bacterial Proteins/metabolism , Catalase/metabolism , Chaperonin 60/metabolism , Helicobacter Infections/enzymology , Helicobacter pylori/enzymology , Hypochlorous Acid/pharmacology , Oxidants/pharmacology , Bacterial Proteins/genetics , Catalase/genetics , Chaperonin 60/genetics , HL-60 Cells , Helicobacter Infections/genetics , Helicobacter pylori/genetics , Humans , Methionine Sulfoxide Reductases , Oxidation-Reduction/drug effects
20.
Sci Rep ; 12(1): 4899, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318361

ABSTRACT

Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte's effects on the animal's microbiota and metabolism were investigated recently, but its effects in planta or on the plant-animal interactions have not been considered. We examined multi-compartment microbiota-metabolome perturbations using multi-'omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.


Subject(s)
Ergot Alkaloids , Festuca , Lolium , Mycotoxicosis , Animal Feed/analysis , Animals , Cattle , Ergot Alkaloids/metabolism , Ergot Alkaloids/toxicity , Festuca/metabolism , Lolium/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL