Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542257

ABSTRACT

While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function.


Subject(s)
Heart Failure , Hypertension , Pulmonary Arterial Hypertension , Humans , Connexin 43/metabolism , Pulmonary Arterial Hypertension/drug therapy , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/etiology , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Cardiac Conduction System Disease , Familial Primary Pulmonary Hypertension/complications , Hypertension/drug therapy , Heart Failure/drug therapy , Inflammation/drug therapy
2.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298084

ABSTRACT

Cardiac rhythm disorders, in particular life-threatening ventricular fibrillation and stroke-provoking fibrillation of the atria, are a permanent focus of both clinical and experimental cardiologists [...].


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/drug therapy , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Heart Atria , Cardiac Conduction System Disease , Ventricular Fibrillation/drug therapy
3.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35163340

ABSTRACT

The prevention of cardiac life-threatening ventricular fibrillation and stroke-provoking atrial fibrillation remains a serious global clinical issue, with ongoing need for novel approaches. Numerous experimental and clinical studies suggest that oxidative stress and inflammation are deleterious to cardiovascular health, and can increase heart susceptibility to arrhythmias. It is quite interesting, however, that various cardio-protective compounds with antiarrhythmic properties are potent anti-oxidative and anti-inflammatory agents. These most likely target the pro-arrhythmia primary mechanisms. This review and literature-based analysis presents a realistic view of antiarrhythmic efficacy and the molecular mechanisms of current pharmaceuticals in clinical use. These include the sodium-glucose cotransporter-2 inhibitors used in diabetes treatment, statins in dyslipidemia and naturally protective omega-3 fatty acids. This approach supports the hypothesis that prevention or attenuation of oxidative and inflammatory stress can abolish pro-arrhythmic factors and the development of an arrhythmia substrate. This could prove a powerful tool of reducing cardiac arrhythmia burden.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Humans , Inflammation/drug therapy , Oxidative Stress , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
4.
Mar Drugs ; 19(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34940658

ABSTRACT

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Light Pollution , Stress, Physiological , Animals , Aquatic Organisms , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/physiopathology , Blood Pressure/drug effects , Connexin 43/metabolism , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/chemistry , Drug Combinations , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/chemistry , Female , Heart/drug effects , Hypertension/complications , Male , Rats , Rats, Inbred SHR , Rats, Wistar
5.
Int J Mol Sci ; 21(8)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325836

ABSTRACT

A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient's life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Hyperthyroidism/complications , Hyperthyroidism/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Arrhythmias, Cardiac/drug therapy , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Calcium/metabolism , Disease Management , Disease Susceptibility , Energy Metabolism/drug effects , Humans , Hyperthyroidism/diagnosis , Hyperthyroidism/etiology , Ion Channels/metabolism , Molecular Targeted Therapy , Thyroid Neoplasms/complications , Thyroid Neoplasms/therapy , Ventricular Fibrillation/diagnosis , Ventricular Fibrillation/etiology
6.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383853

ABSTRACT

Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.


Subject(s)
Connexin 43/metabolism , Connexins/metabolism , Ion Channel Gating , Myocardium/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Connexin 43/ultrastructure , Connexins/ultrastructure , Disease Susceptibility , Humans , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Myocardium/ultrastructure
7.
Int J Mol Sci ; 21(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947691

ABSTRACT

The arrhythmogenic potential of ß1-adrenoceptor autoantibodies (ß1-AA), as well as antiarrhythmic properties of omega-3 in heart diseases, have been reported while underlying mechanisms are poorly understood. We aimed to test our hypothesis that omega-3 (eicosapentaenoic acid-EPA, docosahexaenoic acid-DHA) may inhibit matrix metalloproteinase (MMP-2) activity to prevent cleavage of ß1-AR and formation of ß1-AA resulting in attenuation of pro-arrhythmic connexin-43 (Cx43) and protein kinase C (PKC) signaling in the diseased heart. We have demonstrated that the appearance and increase of ß1-AA in blood serum of male and female 12-month-old spontaneously hypertensive rats (SHR) was associated with an increase of inducible ventricular fibrillation (VF) comparing to normotensive controls. In contrast, supplementation of hypertensive rats with omega-3 for two months suppressed ß1-AA levels and reduced incidence of VF. Suppression of ß1-AA was accompanied by a decrease of elevated myocardial MMP-2 activity, preservation of cardiac cell membrane integrity and Cx43 topology. Moreover, omega-3 abrogated decline in expression of total Cx43 as well as its phosphorylated forms at serine 368 along with PKC-ε, while decreased pro-fibrotic PKC-δ levels in hypertensive rat heart regardless the sex. The implication of MMP-2 in the action of omega-3 was also demonstrated in cultured cardiomyocytes in which desensitization of ß1-AR due to permanent activation of ß1-AR with isoproterenol was prevented by MMP-2 inhibitor or EPA. Collectively, these data support the notion that omega-3 via suppression of ß1-AA mechanistically controlled by MMP-2 may attenuate abnormal of Cx43 and PKC-ε signaling; thus, abolish arrhythmia substrate and protect rats with an advanced stage of hypertension from malignant arrhythmias.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Autoantibodies/immunology , Autoantigens/immunology , Fatty Acids, Omega-3/pharmacology , Hypertension/complications , Receptors, Adrenergic, beta-1/immunology , Animals , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Biomarkers , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Connexin 43/metabolism , Disease Models, Animal , Disease Susceptibility , Fatty Acids, Omega-3/metabolism , Female , Male , Matrix Metalloproteinase 2/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Protein Kinase C-epsilon/metabolism , Rats , Rats, Inbred SHR , Sarcolemma/metabolism , Sarcolemma/ultrastructure , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/etiology , Ventricular Fibrillation/physiopathology
8.
Mol Cell Biochem ; 454(1-2): 191-202, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30446908

ABSTRACT

We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.


Subject(s)
Connexin 43/metabolism , Dietary Sucrose/adverse effects , Fatty Acids, Omega-3/pharmacology , Heart/drug effects , Melatonin/pharmacology , Obesity/drug therapy , Signal Transduction/drug effects , Animals , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Fatty Acids, Omega-3/metabolism , Female , Melatonin/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Obesity/chemically induced , Obesity/complications , Obesity/metabolism , Protein Kinase C-delta/metabolism , Protein Kinase C-epsilon/metabolism , Rats , Rats, Wistar
9.
Can J Physiol Pharmacol ; 97(9): 829-836, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30908945

ABSTRACT

Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.


Subject(s)
Connexin 43/metabolism , Matrix Metalloproteinase 2/metabolism , Myocardium/cytology , Oxygen/metabolism , Signal Transduction , Animals , Female , Myocardium/metabolism , Pilot Projects , Pregnancy , Rats
10.
Int J Mol Sci ; 20(15)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374823

ABSTRACT

Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor ß1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.


Subject(s)
Connexin 43/metabolism , Extracellular Matrix Proteins/metabolism , Hypertension/metabolism , Myocardium/metabolism , Thyroid Hormones/metabolism , Animals , Hypertension/blood , Male , Rats, Inbred SHR , Rats, Inbred WKY , Thyroid Hormones/blood
11.
Molecules ; 24(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159153

ABSTRACT

Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment. Recently, molecular hydrogen has been investigated in preclinical and clinical studies on various diseases associated with oxidative and inflammatory stress such as radiation-induced heart disease, ischemia-reperfusion injury, myocardial and brain infarction, storage of the heart, heart transplantation, etc. Hydrogen is primarily administered via inhalation, drinking hydrogen-rich water, or injection of hydrogen-rich saline. It favorably modulates signal transduction and gene expression resulting in suppression of proinflammatory cytokines, excess ROS production, and in the activation of the Nrf2 antioxidant transcription factor. Although H2 appears to be an important biological molecule with anti-oxidant, anti-inflammatory, and anti-apoptotic effects, the exact mechanisms of action remain elusive. There is no reported clinical toxicity; however, some data suggests that H2 has a mild hormetic-like effect, which likely mediate some of its benefits. The mechanistic data, coupled with the pre-clinical and clinical studies, suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other conditions.


Subject(s)
Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/therapy , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Combined Modality Therapy , Humans , Hydrogen/metabolism , Hydrogen/pharmacology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Radiation Injuries/complications , Reactive Oxygen Species/metabolism , Treatment Outcome
12.
Int J Mol Sci ; 19(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642568

ABSTRACT

Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43), activation of the protein kinase C (PKC) signaling along with the decline of microRNA (miR)-1 and an increase of miR-21 levels in the left ventricle (LV). We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV) following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day), atorvastatin (0.25 mg/day), and sildenafil (0.3 mg/day) for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.


Subject(s)
Antioxidants/pharmacology , Aspirin/pharmacology , Atorvastatin/pharmacology , Connexin 43/metabolism , Heart/radiation effects , MicroRNAs/genetics , Radiation Injuries/metabolism , Animals , Antioxidants/therapeutic use , Aspirin/therapeutic use , Atorvastatin/therapeutic use , Male , Myocardium/metabolism , Radiation Injuries/drug therapy , Radiation, Ionizing , Rats , Rats, Wistar
13.
Can J Physiol Pharmacol ; 95(8): 911-919, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28459162

ABSTRACT

We aimed to explore whether myocardial intercellular channel protein connexin-43 (Cx43) along with PKCε and MMP-2 might be implicated in responses to acute cardiac injury induced by 2 distinct sublethal interventions in Wistar rats. Animals underwent either single chest irradiation at dose of 25 Gy or subcutaneous injection of isoproterenol (ISO, 120 mg/kg) and were compared with untreated controls. Forty-two days post-interventions, the hearts were excised and left ventricles were used for analysis. The findings showed an increase of total as well as phosphorylated forms of myocardial Cx43 regardless of the type of interventions. Enhanced phosphorylation of Cx43 coincided with increased PKCε expression in both models. Elevation of Cx43 was associated with its enhanced distribution on lateral surfaces of the cardiomyocytes in response to both interventions, while focal areas of fibrosis without Cx43 were found in post-ISO but not post-irradiated rat hearts. In parallel, MMP-2 activity was decreased in the former while increased in the latter. Cardiac function was maintained and the susceptibility of the hearts to ischemia or malignant arrhythmias was not deteriorated 42 days after interventions when compared with controls. Altogether, the findings indicate that myocardial Cx43 is most likely implicated in potentially salutary responses to acute heart injury.


Subject(s)
Cardiomyopathies/metabolism , Connexin 43/metabolism , Myocardium/metabolism , Up-Regulation , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Extracellular Space/drug effects , Extracellular Space/metabolism , Extracellular Space/radiation effects , Isoproterenol/adverse effects , Male , Matrix Metalloproteinase 2/metabolism , Myocardium/pathology , Protein Kinase C-epsilon/metabolism , Rats , Rats, Wistar , Up-Regulation/drug effects , Up-Regulation/radiation effects
14.
Can J Physiol Pharmacol ; 95(10): 1190-1203, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28750189

ABSTRACT

Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.


Subject(s)
Coronary Vessels/radiation effects , Heart Diseases/etiology , Inflammation Mediators/metabolism , Myocytes, Cardiac/radiation effects , Radiation Injuries/etiology , Reactive Oxygen Species/metabolism , Animals , Apoptosis/radiation effects , Biomarkers/metabolism , Coronary Vessels/metabolism , Coronary Vessels/pathology , DNA Damage , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/radiation effects , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Lipid Peroxidation/radiation effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/radiation effects , Radiation Injuries/metabolism , Radiation Injuries/pathology , Signal Transduction/radiation effects
15.
Int J Mol Sci ; 18(11)2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29160855

ABSTRACT

The purpose of this study was to investigate the effect of antioxidants rich red palm oil (RPO) supplementation on cardiac oxidative stress known as crucial factor deteriorating heart function in hypertension. 3-month-old, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were fed standard rat chow without or with RPO (0.2 mL/day/5 weeks). General characteristic of rats were registered. Left ventricular tissue (LV) was used to determine expression of superoxide dismutases (SOD1, SOD2) and glutathione peroxidases (Gpx) as well as activity of nitric oxide synthase (NOS). Functional parameters of the heart were examined during basal conditions and at the early-phase of post-ischemic reperfusion using Langendorff-perfused system. RPO intake significantly reduced elevated blood pressure and total NOS activity as well as increased lowered expression of mitochondrial SOD2 in SHR hearts during basal condition. Moreover, RPO supplementation resulted in suppression of elevated heart rate, increase of reduced coronary flow and enhancement of systolic and diastolic heart function at the early-phase of post-ischemic reperfusion. It is concluded that SHR benefit from RPO intake due to decrease of blood pressure, amelioration of oxidative stress and protection of heart function that was deteriorated by post-ischemic reperfusion.


Subject(s)
Antioxidants/metabolism , Heart/drug effects , Myocardium/metabolism , Nitric Oxide Synthase/metabolism , Palm Oil/pharmacology , Animals , Blood Pressure/drug effects , Coronary Circulation/drug effects , Dietary Supplements , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Heart Function Tests , Heart Rate/drug effects , Myocardium/enzymology , Rats , Rats, Inbred SHR , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Glutathione Peroxidase GPX1
16.
Gen Physiol Biophys ; 35(2): 215-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26830133

ABSTRACT

Intercellular connexin-43 (Cx43) channels are essential for electrical coupling and direct cardiac cell to cell communication to ensure heart function. Expression of Cx43 is altered due to stressful conditions and also affected by the alterations in extracellular matrix. We aimed to explore the effect of chest irradiation on myocardial expression of Cx43 and miR-1 which regulates GJA1 gene transcription for Cx43. Implication of miR-21 that regulates expression of extracellular matrix proteins and PKC signalling that may affect Cx43-mediated coupling was examined as well. Western blot and real-time PCR analyses revealed that six weeks after the exposure of healthy Wistar rats chest to single irradiation of 25 Gy significant myocardial alterations were observed: 1)/ increase of total Cx43 protein expression and its functional phosphorylated forms; 2) suppressed levels of miR-1; 3) enhanced expression of PKCε which phosphorylates Cx43; 4) increase of miR-21 levels; 5) increase of PKCδ expression. These results suggest that irradiation causes post-transcriptional regulation of myocardial Cx43 expression by miR-1 possibly through miR-21 and PKC signalling. We conclude that single dose of irradiation has the potential to enhance myocardial intercellular communication that might be beneficial for the heart that needs to be investigated in details in further studies.


Subject(s)
Connexin 43/metabolism , Heart Injuries/metabolism , MicroRNAs/metabolism , Protein Kinase C/metabolism , Radiation Injuries/metabolism , Adaptation, Physiological/radiation effects , Animals , Heart/radiation effects , Male , Myocardium/metabolism , Rats , Rats, Wistar , Signal Transduction/radiation effects
17.
J Electrocardiol ; 48(3): 434-40, 2015.
Article in English | MEDLINE | ID: mdl-25732099

ABSTRACT

Defects in intercellular coupling in the heart play a key role in the initiation and persistence of malignant arrhythmias. Such disorders result from abnormal expression and distribution of connexins, the major constituents of cardiac gap junction channels. The alterations of myocardial connexin are well established as a consistent feature of both human and animal heart disease and aging. Following these facts, the modulation of connexin mediated intercellular coupling is suggested as a new antiarrhythmic approach. This review provides recent data supporting this concept. It can be challenging for the development of new antiarrhythmic drugs. Moreover, findings point out the implication of some endogenous compounds in protection from life-threatening arrhythmias via preservation of myocardial connexin.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Arrhythmias, Cardiac/physiopathology , Cell Communication , Connexins/metabolism , Heart Conduction System/physiopathology , Muscle Cells/physiology , Animals , Humans , Models, Cardiovascular , Muscle Cells/cytology
18.
Can J Physiol Pharmacol ; 91(8): 633-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23889002

ABSTRACT

We hypothesized that the pineal hormone melatonin, which exhibits cardioprotective effects, might affect myocardial expression of cell-to-cell electrical coupling protein connexin-43 (Cx43) and protein kinase C (PKC) signaling, and hence, the propensity of the heart to lethal ventricular fibrillation (VF). Spontaneously hypertensive (SHR) and normotensive Wistar rats fed a standard rat chow received melatonin (40 µg/mL in drinking water during the night) for 5 weeks, and were compared with untreated rats. Melatonin significantly reduced blood pressure and normalized triglycerides in SHR, whereas it decreased body mass and adiposity in Wistar rats. Compared with healthy rats, the threshold to induce sustained VF was significantly lower in SHR (18.3 ± 2.6 compared with 29.2 ± 5 mA; p < 0.05) and increased in melatonin-treated SHR and Wistar rats to 33.0 ± 4 and 32.5 ± 4 mA. Melatonin attenuated abnormal myocardial Cx43 distribution in SHR, and upregulated Cx43 mRNA, total Cx43 protein, and its functional phosphorylated forms in SHR, and to a lesser extent, in Wistar rat hearts. Moreover, melatonin suppressed myocardial proapoptotic PKCδ expression and increased cardioprotective PKCε expression in both SHR and Wistar rats. Our findings indicate that melatonin protects against lethal arrhythmias at least in part via upregulation of myocardial Cx43 and modulation of PKC-related cardioprotective signaling.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Cardiotonic Agents/therapeutic use , Connexin 43/metabolism , Hypertension/drug therapy , Melatonin/therapeutic use , Myocardium/metabolism , Adaptation, Physiological/drug effects , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Blotting, Western , Cardiotonic Agents/adverse effects , Cardiotonic Agents/blood , Connexin 43/biosynthesis , Hypertension/complications , Hypertension/metabolism , Hypertension/pathology , Melatonin/administration & dosage , Melatonin/blood , Protein Kinase C/metabolism , Rats , Rats, Inbred SHR , Rats, Wistar , Real-Time Polymerase Chain Reaction , Signal Transduction
19.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830700

ABSTRACT

Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.


Subject(s)
Heart Failure , Hypertension , Humans , Arrhythmias, Cardiac , Myocardium , Heart Failure/complications , Myocytes, Cardiac
20.
Sci Rep ; 13(1): 20923, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38017033

ABSTRACT

Heart failure (HF) is life-threatening disease due to electro-mechanical dysfunction associated with hemodynamic overload, while alterations of extracellular matrix (ECM) along with perturbed connexin-43 (Cx43) might be key factors involved. We aimed to explore a dual impact of pressure, and volume overload due to aorto-caval fistula (ACF) on Cx43 and ECM as well as effect of renin-angiotensin blockade. Hypertensive Ren-2 transgenic rats (TGR) and normotensive Hannover Sprague-Dawley rats (HSD) that underwent ACF were treated for 15-weeks with trandolapril or losartan. Blood serum and heart tissue samples of the right (RV) and left ventricles (LV) were used for analyses. ACF-HF increased RV, LV and lung mass in HSD and to lesser extent in TGR, while treatment attenuated it and normalized serum ANP, BNP-45 and TBARS. Cx43 protein and its ser368 variant along with PKCε were lower in TGR vs HSD and suppressed in both rat strains due to ACF but prevented more by trandolapril. Pro-hypertrophic PKCδ, collagen I and hydroxyproline were elevated in TGR and increased due to ACF in both rat strains. While SMAD2/3 and MMP2 levels were lower in TGR vs HSD and reduced due to ACF in both strains. Findings point out the strain-related differences in response to volume overload. Disorders of Cx43 and ECM signalling may contribute not only to HF but also to the formation of arrhythmogenic substrate. There is benefit of treatment with trandolapril and losartan indicating their pleiotropic anti-arrhythmic potential. It may provide novel input to therapy.


Subject(s)
Fistula , Heart Failure , Hypertension , Rats , Animals , Rats, Transgenic , Losartan/pharmacology , Renin , Connexin 43/genetics , Rats, Sprague-Dawley , Blood Pressure , Extracellular Matrix
SELECTION OF CITATIONS
SEARCH DETAIL