Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 35: 199-228, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28142322

ABSTRACT

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.


Subject(s)
Immunity, Innate , Immunotherapy/methods , Intestinal Mucosa/immunology , Microbiota/immunology , Neoplasms/immunology , Adaptive Immunity , Animals , Antineoplastic Agents/therapeutic use , Carcinogenesis , Humans , Inflammation , Neoplasms/microbiology , Neoplasms/therapy , Wound Healing
2.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33453153

ABSTRACT

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Subject(s)
Gastrointestinal Microbiome , Host-Pathogen Interactions , Animals , Bacterial Infections/immunology , Bacterial Infections/microbiology , Colony Count, Microbial , Gastrointestinal Microbiome/drug effects , Host-Pathogen Interactions/drug effects , Immunity , Mice, Inbred C57BL , Sulfides/metabolism , Taurine/pharmacology
3.
Annu Rev Immunol ; 30: 677-706, 2012.
Article in English | MEDLINE | ID: mdl-22224761

ABSTRACT

Recent scientific advances have contributed much to the dissection of the complex molecular and cellular pathways involved in the connection between cancer and inflammation. The evidence for this connection in humans is based on the association between infection or chronic sterile inflammation and cancer. The decreased incidence of tumors in individuals who have used nonsteroidal anti-inflammatory drugs is supportive of a role for inflammation in cancer susceptibility. The increased incidence of tumors in overweight patients points to a role for adipose tissue inflammation and energy metabolism in cancer. Energy metabolism, obesity, and genetic instability are regulated in part by the relationship of the organism with commensal bacteria that affect inflammation with both local and systemic effects. Different aspects of inflammation appear to regulate all phases of malignant disease, including susceptibility, initiation, progression, dissemination, morbidity, and mortality.


Subject(s)
Inflammation/complications , Neoplasms/etiology , Animals , Disease Susceptibility , Humans , Inflammation/metabolism , Neoplasms/immunology , Neoplasms/metabolism
4.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38513665

ABSTRACT

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Subject(s)
Interleukin-23 , Periodontitis , Humans , Epithelial Cells , Inflammation , Toll-Like Receptor 5/metabolism
5.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29358051

ABSTRACT

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Subject(s)
Adaptive Immunity , Bacteria/immunology , Histocompatibility Antigens Class I/immunology , Microbiota/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Gene Expression Regulation/immunology , Histocompatibility Antigens Class I/genetics , Mice , Mice, Transgenic
6.
Cell ; 171(5): 1015-1028.e13, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29056339

ABSTRACT

Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome , Mice/classification , Mice/microbiology , Animals , Animals, Laboratory , Animals, Wild , Carcinogenesis/immunology , Disease Resistance , Female , Male , Maryland , Mice/immunology , Mice, Inbred C57BL , Peromyscus , Virus Diseases/immunology
7.
Immunity ; 54(1): 151-163.e6, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33220232

ABSTRACT

The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear. Interleukin-33 (IL-33) acts as an alarmin cytokine by alerting the system of potential environmental stresses. We here demonstrate that IL-33 induced instantaneous peristaltic movement and facilitated Trichuris muris expulsion. We found that IL-33 could be sensed by EC cells, inducing release of 5-HT. IL-33-mediated 5-HT release activated enteric neurons, subsequently promoting gut motility. Mechanistically, IL-33 triggered calcium influx via a non-canonical signaling pathway specifically in EC cells to induce 5-HT secretion. Our data establish an immune-neuroendocrine axis in calibrating rapid 5-HT release for intestinal homeostasis.


Subject(s)
Enterochromaffin Cells/physiology , Interleukin-33/metabolism , Intestines/physiology , Neurons/physiology , Serotonin/metabolism , Trichuriasis/immunology , Trichuris/physiology , Animals , Calcium Signaling , Homeostasis , Interleukin-33/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroimmunomodulation , Peristalsis
8.
Cell ; 163(2): 354-66, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451485

ABSTRACT

Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome , Immune System Diseases/microbiology , Immune System Diseases/pathology , Lymphatic Diseases/pathology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/physiology , Cell Movement , Chronic Disease , Dendritic Cells/pathology , Female , Humans , Lymphatic Diseases/microbiology , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Male , Mesentery/immunology , Mesentery/pathology , Specific Pathogen-Free Organisms , Yersinia pseudotuberculosis Infections/pathology
9.
Immunity ; 50(1): 166-180.e7, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30650375

ABSTRACT

Chronic inflammation drives the progression of colorectal cancer (CRC). Increased expression of interleukin (IL)-17A is associated with poor prognosis, and IL-17A blockade curbs tumor progression in preclinical models of CRC. Here we examined the impact of IL-1 signaling, a key regulator of the IL-17 pathway, in different cell types within the CRC microenvironment. Genetic deletion of the IL-1 receptor (IL-1R1) in epithelial cells alleviated tumorigenesis in the APC model of CRC, demonstrating a cell-autonomous role for IL-1 signaling in early tumor seed outgrowth. T cell specific ablation of IL-1R1 decreased tumor-elicited inflammation dependent on IL-17 and IL-22, thereby reducing CRC progression. The pro-tumorigenic roles of IL-1 were counteracted by its effects on myeloid cells, particularly neutrophils, where IL-1R1 ablation resulted in bacterial invasion into tumors, heightened inflammation and aggressive CRC progression. Thus, IL-1 signaling elicits cell-type-specific responses, which, in aggregate, set the inflammatory tone of the tumor microenvironment and determine the propensity for disease progression.


Subject(s)
Colorectal Neoplasms/immunology , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-1/metabolism , Neutrophils/immunology , Salmonella Infections, Animal/immunology , Salmonella/immunology , Animals , Carcinogenesis , Cells, Cultured , Humans , Interleukin-1/genetics , Interleukin-1/immunology , Interleukins/metabolism , Mice , Mice, Knockout , Neutrophils/ultrastructure , Organ Specificity , Receptors, Interleukin-1/genetics , Signal Transduction , Tumor Microenvironment , Interleukin-22
10.
Immunity ; 51(5): 885-898.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31542340

ABSTRACT

Graft-versus-host disease (GVHD) in the gastrointestinal (GI) tract is the principal determinant of lethality following allogeneic bone marrow transplantation (BMT). Here, we examined the mechanisms that initiate GVHD, including the relevant antigen-presenting cells. MHC class II was expressed on intestinal epithelial cells (IECs) within the ileum at steady state but was absent from the IECs of germ-free mice. IEC-specific deletion of MHC class II prevented the initiation of lethal GVHD in the GI tract. MHC class II expression on IECs was absent from mice deficient in the TLR adaptors MyD88 and TRIF and required IFNγ secretion by lamina propria lymphocytes. IFNγ responses are characteristically driven by IL-12 secretion from myeloid cells. Antibiotic-mediated depletion of the microbiota inhibited IL-12/23p40 production by ileal macrophages. IL-12/23p40 neutralization prevented MHC class II upregulation on IECs and initiation of lethal GVHD in the GI tract. Thus, MHC class II expression by IECs in the ileum initiates lethal GVHD, and blockade of IL-12/23p40 may represent a readily translatable therapeutic strategy.


Subject(s)
Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Gastrointestinal Microbiome/immunology , Graft vs Host Disease/etiology , Histocompatibility Antigens Class II/immunology , Intestinal Mucosa/immunology , Animals , Antigen-Presenting Cells/metabolism , Biomarkers , Cytokines/metabolism , Disease Susceptibility , Female , Gene Expression , Graft vs Host Disease/mortality , Histocompatibility Antigens Class II/genetics , Ileum/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Kaplan-Meier Estimate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Male , Mice , Mice, Transgenic , Prognosis , Promoter Regions, Genetic , Signal Transduction
11.
Immunity ; 49(5): 943-957.e9, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30389414

ABSTRACT

Although commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis, and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23-deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.


Subject(s)
Atherosclerosis/etiology , Atherosclerosis/metabolism , Diet , Gastrointestinal Microbiome , Homeostasis , Interleukin-23/metabolism , Interleukins/metabolism , Animals , Atherosclerosis/pathology , Biomarkers , Disease Models, Animal , Disease Progression , Gene Expression , Immunophenotyping , Interleukin-23/deficiency , Lipid Metabolism , Mice , Mice, Knockout , Osteopontin/genetics , Osteopontin/metabolism , Signal Transduction , Interleukin-22
12.
Immunity ; 46(1): 133-147, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28087239

ABSTRACT

Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.


Subject(s)
Gingiva/immunology , Immunity, Mucosal/immunology , Immunologic Surveillance/immunology , Mouth Mucosa/immunology , Th17 Cells/immunology , Animals , Flow Cytometry , Gingiva/microbiology , Humans , Mastication , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota , Mouth Mucosa/microbiology , Real-Time Polymerase Chain Reaction
13.
J Immunol ; 211(7): 1099-1107, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37624046

ABSTRACT

The gut microbiome is an important modulator of the host immune system. In this study, we found that altering the gut microbiome by oral vancomycin increases liver invariant NKT (iNKT) cell function. Enhanced iNKT cytokine production and activation marker expression were observed in vancomycin-treated mice following both Ag-specific and Ag-independent in vivo iNKT stimulations, with a more prominent effect in the liver than in the spleen. Fecal transplantation studies demonstrated that the iNKT functional regulation is mediated by altering the gut microbiome but uncoupled from the modulation of iNKT cell population size. Interestingly, when stimulated in vitro, iNKT cells from vancomycin-treated mice did not show increased activation, suggesting an indirect regulation. iNKT cells expressed high levels of IL-18 receptor, and vancomycin increased the expression of IL-18 in the liver. Blocking IL-18 by neutralizing Ab or using genetically deficient mice attenuated the enhanced iNKT activation. Liver macrophages were identified as a major source of IL-18. General macrophage depletion by clodronate abolished this iNKT activation. Using anti-CSF-1R depletion or LyzCrexCSF-1RLsL-DTR mice identified CSF-1R+ macrophages as a critical modulator of iNKT function. Vancomycin treatment had no effect on iNKT cell function in vivo in IL-18 knockout macrophage reconstituted mice. Together, our results demonstrate that the gut microbiome controls liver iNKT function via regulating CSF-1R+ macrophages to produce IL-18.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Interleukin-18 , Vancomycin/pharmacology , Macrophages , Liver , Mice, Knockout , Receptor Protein-Tyrosine Kinases
14.
Nat Immunol ; 13(10): 932-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22990891

ABSTRACT

Resistance mechanisms of the innate and adaptive immune responses prevent the colonization of foreign organisms in unwanted anatomical sites and participate in tissue repair and restoration of homeostasis after damage induced either by the invasion of pathogenic microbes or by the organism's response to them. The intensity of the response is controlled and limited by positive and negative feedback circuits that aim at preventing collateral tissue damage. In this Review we will discuss the protective and pathogenic effects of host-commensal microbiota mutualism on the immune response and illustrate some examples of collateral tissue and systemic damage caused by immunity to pathogens.


Subject(s)
Adaptive Immunity , Immunity, Innate , Metagenome/immunology , Animals , Chemokines/immunology , Chemokines/metabolism , Cytokines , Homeostasis , Humans , Immune Tolerance , Symbiosis , T-Lymphocyte Subsets/immunology
15.
Immunity ; 42(4): 602-4, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25902478

ABSTRACT

The organism needs to tailor the intestinal inflammatory response to pathogenic bacteria and to pathobionts that are only occasionally pathogenic. In this issue of Immunity, Seo et al. (2015) show that the pathobiont Proteus mirabilis induces NLRP3 inflammasome-dependent interleukin-1ß (IL-1ß) release from CCR2(+) Ly6C(high) inflammatory monocytes.


Subject(s)
Carrier Proteins/immunology , Inflammasomes/immunology , Interleukin-1beta/immunology , Microbiota/immunology , Monocytes/immunology , Symbiosis/immunology , Animals
16.
Immunity ; 42(6): 1130-42, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26070484

ABSTRACT

Tissue-infiltrating Ly6C(hi) monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DCs) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals after tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function.


Subject(s)
Bone Marrow Cells/immunology , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Animals , Antigens, Ly/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/parasitology , Cell Differentiation , Cells, Cultured , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-12/metabolism , Intestinal Mucosa/parasitology , Killer Cells, Natural/parasitology , Leukocytes, Mononuclear/parasitology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Immunological , Organ Specificity/immunology , Repressor Proteins/genetics , Repressor Proteins/metabolism
17.
J Cell Sci ; 134(5)2021 03 08.
Article in English | MEDLINE | ID: mdl-33468624

ABSTRACT

Host-derived antimicrobial peptides play an important role in the defense against extracellular bacterial infections. However, the capacity of antimicrobial peptides derived from macrophages as potential antibacterial effectors against intracellular pathogens remains unknown. In this study, we report that normal (wild-type, WT) mouse macrophages increased their expression of cathelin-related antimicrobial peptide (CRAMP, encoded by Camp) after infection by viable E. coli or stimulation with inactivated E. coli and its product lipopolysaccharide (LPS), a process involving activation of NF-κB followed by protease-dependent conversion of CRAMP from an inactive precursor to an active form. The active CRAMP was required by WT macrophages for elimination of phagocytosed E. coli, with participation of autophagy-related proteins ATG5, LC3-II and LAMP-1, as well as for aggregation of the bacteria with p62 (also known as SQSTM1). This process was impaired in CRAMP-/- macrophages, resulting in retention of intracellular bacteria and fragmentation of macrophages. These results indicate that CRAMP is a critical component in autophagy-mediated clearance of intracellular E. coli by mouse macrophages.


Subject(s)
Antimicrobial Cationic Peptides , Escherichia coli , Animals , Autophagy , Macrophages , Mice , Phagocytosis
18.
Pediatr Res ; 94(3): 1158-1165, 2023 09.
Article in English | MEDLINE | ID: mdl-37029236

ABSTRACT

BACKGROUND: The biological mechanism by which the maternal gastrointestinal microbiota contributes to fetal growth and neonatal birth weight is currently unknown. The purpose of this study was to explore how the composition of the maternal microbiome in varying pre-gravid body mass index (BMI) groups are associated with neonatal birth weight adjusted for gestational age. METHODS: Retrospective, cross-sectional metagenomic analysis of bio-banked fecal swab biospecimens (n = 102) self-collected by participants in the late second trimester of pregnancy. RESULTS: Through high-dimensional regression analysis using principal components (PC) of the microbiome, we found that the best performing multivariate model explained 22.9% of the variation in neonatal weight adjusted for gestational age. Pre-gravid BMI (p = 0.05), PC3 (p = 0.03), and the interaction of the maternal microbiome with maternal blood glucose on the glucose challenge test (p = 0.01) were significant predictors of neonatal birth weight after adjusting for potential confounders including maternal antibiotic use during gestation and total gestational weight gain. CONCLUSIONS: Our results indicate a significant association between the maternal gastrointestinal microbiome in the late second trimester and neonatal birth weight adjusted for gestational age. Moderated by blood glucose at the time of the universal glucose screening, the gastrointestinal microbiome may have a role in the regulation of fetal growth. IMPACT: Maternal blood glucose in the late second trimester significantly moderates the relationship between the maternal gastrointestinal microbiome and neonatal size adjusted for gestational age. Our findings provide preliminary evidence for fetal programming of neonatal birth weight through the maternal gastrointestinal microbiome during pregnancy.


Subject(s)
Gastrointestinal Microbiome , Infant, Newborn , Pregnancy , Female , Humans , Birth Weight , Blood Glucose , Retrospective Studies , Cross-Sectional Studies , Body Mass Index
19.
J Pathol ; 253(3): 339-350, 2021 03.
Article in English | MEDLINE | ID: mdl-33104252

ABSTRACT

The cathelin-related antimicrobial peptide CRAMP protects the mouse colon from inflammation, inflammation-associated carcinogenesis, and disrupted microbiome balance, as shown in systemic Cnlp-/- mice (also known as Camp-/- mice). However, the mechanistic basis for the role and the cellular source of CRAMP in colon pathophysiology are ill defined. This study, using either epithelial or myeloid conditional Cnlp-/- mice, demonstrated that epithelial cell-derived CRAMP played a major role in supporting normal development of colon crypts, mucus production, and repair of injured mucosa. On the other hand, myeloid cell-derived CRAMP potently supported colon epithelial resistance to bacterial invasion during acute inflammation with exacerbated mucosal damage and higher rate of mouse mortality. Therefore, a well concerted cooperation of epithelial- and myeloid-derived CRAMP is essential for colon mucosal homeostasis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Epithelial Cells/metabolism , Homeostasis/physiology , Intestinal Mucosa/metabolism , Macrophages/metabolism , Animals , Colon/physiology , Mice , Mice, Knockout , Cathelicidins
20.
J Transl Med ; 19(1): 278, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193182

ABSTRACT

Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd-5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine.


Subject(s)
Immunotherapy , Melanoma , Humans , Italy , Melanoma/drug therapy , Molecular Targeted Therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL