Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931600

ABSTRACT

For individuals with spinal cord injuries (SCIs) above the midthoracic level, a common complication is the partial or complete loss of trunk stability in the seated position. Functional neuromuscular stimulation (FNS) can restore seated posture and other motor functions after paralysis by applying small electrical currents to the peripheral motor nerves. In particular, the Networked Neuroprosthesis (NNP) is a fully implanted, modular FNS system that is also capable of capturing information from embedded accelerometers for measuring trunk tilt for feedback control of stimulation. The NNP modules containing the accelerometers are located in the body based on surgical constraints. As such, their exact orientations are generally unknown and cannot be easily assessed. In this study, a method for estimating trunk tilt that employed the Gram-Schmidt method to reorient acceleration signals to the anatomical axes of the body was developed and deployed in individuals with SCI using the implanted NNP system. An anatomically realistic model of a human trunk and five accelerometer sensors was developed to verify the accuracy of the reorientation algorithm. Correlation coefficients and root mean square errors (RMSEs) were calculated to compare target trunk tilt estimates and tilt estimates derived from simulated accelerometer signals under a variety of conditions. Simulated trunk tilt estimates with correlation coefficients above 0.92 and RMSEs below 5° were achieved. The algorithm was then applied to accelerometer signals from implanted sensors installed in three NNP recipients. Error analysis was performed by comparing the correlation coefficients and RMSEs derived from trunk tilt estimates calculated from implanted sensor signals to those calculated via motion capture data, which served as the gold standard. NNP-derived trunk tilt estimates exhibited correlation coefficients between 0.80 and 0.95 and RMSEs below 13° for both pitch and roll in most cases. These findings suggest that the algorithm is effective at estimating trunk tilt with the implanted sensors of the NNP system, which implies that the method may be appropriate for extracting feedback signals for control systems for seated stability with NNP technology for individuals who have reduced control of their trunk due to paralysis.


Subject(s)
Accelerometry , Algorithms , Torso , Humans , Accelerometry/methods , Torso/physiology , Spinal Cord Injuries/physiopathology , Neural Prostheses , Posture/physiology
2.
Neuromodulation ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38752947

ABSTRACT

OBJECTIVES: Neuroprosthetic devices can improve quality of life by providing an alternative option for motor function lost after spinal cord injury, stroke, and other central nervous system disorders. The objective of this study is to analyze the outcomes of implanted pulse generators that our research group installed in volunteers with paralysis to assist with lower extremity function over a 25-year period, specifically, to determine survival rates and common modes of malfunction, reasons for removal or revision, and precipitating factors or external events that may have adversely influenced device performance. MATERIALS AND METHODS: Our implantable receiver-stimulator (IRS-8) and implantable stimulator-telemeter (IST-12 and IST-16) device histories were retrospectively reviewed through surgical notes, regulatory documentation, and manufacturing records from 1996 to 2021. RESULTS: Most of the 65 devices (64.6%) implanted in 43 volunteers remain implanted and operational. Seven underwent explantation owing to infection; seven had internal failures, and six were physically broken by external events. Of the 22 devices explanted, 15 were successfully replaced to restore recipients' enhanced functionality. There were no instances of sepsis or major health complications. The five infections that followed all 93 IRS and IST lower extremity research surgeries during this period indicate a pooled infection rate of 5.4%. The Kaplan-Meier analysis of technical malfunctions between the implant date and most recent follow-up shows five-, ten-, and 20-year device survival rates of 92%, 84%, and 71%, respectively. CONCLUSIONS: Incidence of malfunction is similar to, whereas infection rates are slightly higher than, other commonly implanted medical devices. Future investigations will focus on infection prevention, modifying techniques on the basis of recipient demographics, lifestyle factors, and education, and integrating similar experience of motor neuroprostheses used in other applications.

3.
J Biomech Eng ; 144(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35199154

ABSTRACT

The trunk movements of an individual paralyzed by spinal cord injury (SCI) can be restored by functional neuromuscular stimulation (FNS), which applies low-level current to the motor nerves to activate the paralyzed muscles to generate useful torques, to actuate the trunk. FNS can be modulated to vary the biotorques to drive the trunk to follow a user-defined reference motion and maintain it at a desired postural set-point. However, a stabilizing modulation policy (i.e., control law) is difficult to derive as the biomechanics of the spine and pelvis are complex and the neuromuscular dynamics are highly nonlinear, nonautonomous, and input redundant. Therefore, a control method that can stabilize it with FNS without knowing the accurate skeletal and neuromuscular dynamics is desired. To achieve this goal, we propose a control framework consisting of a robust control module that generates stabilizing torques while an artificial neural network-based mapping mechanism with an anatomy-based updating law ensures that the muscle-generated torques converge to the stabilizing values. For the robust control module, two sliding-mode robust controllers (i.e., a high compensation controller and an adaptive controller), were investigated. System stability of the proposed control method was rigorously analyzed based on the assumption that the skeletal dynamics can be approximated by Euler-Lagrange equations with bounded disturbances, which enables the generalization of the control framework. We present experiments in a simulation environment where an anatomically realistic three-dimensional musculoskeletal model of the human trunk moved in the anterior- posterior and medial-lateral directions while perturbations were applied. The satisfactory simulation results suggest the potential of this control technique for trunk tracking tasks in a typical clinical environment.


Subject(s)
Posture , Spinal Cord Injuries , Biomechanical Phenomena , Computer Simulation , Humans , Muscle, Skeletal/physiology , Posture/physiology , Torso
4.
J Neuroeng Rehabil ; 19(1): 139, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510259

ABSTRACT

BACKGROUND: Restoring or improving seated stability after spinal cord injury (SCI) can improve the ability to perform activities of daily living by providing a dynamic, yet stable, base for upper extremity motion. Seated stability can be obtained with activation of the otherwise paralyzed trunk and hip musculature with neural stimulation, which has been shown to extend upper limb reach and improve seated posture. METHODS: We implemented a proportional, integral, derivative (PID) controller to maintain upright seated posture by simultaneously modulating both forward flexion and lateral bending with functional neuromuscular stimulation. The controller was tested with a functional reaching task meant to require trunk movements and impart internal perturbations through rapid changes in inertia due to acquiring, moving, and replacing objects with one upper extremity. Five subjects with SCI at various injury levels who had received implanted stimulators targeting their trunk and hip muscles participated in the study. Each subject was asked to move a weighted jar radially from a center home station to one of three target stations. The task was performed with the controller active, inactive, or with a constant low level of neural stimulation. Trunk pitch (flexion) and roll (lateral bending) angles were measured with motion capture and plotted against each other to generate elliptical movement profiles for each task and condition. Postural sway was quantified by calculating the ellipse area. Additionally, the mean effective reach (distance between the shoulder and wrist) and the time required to return to an upright posture was determined during reaching movements. RESULTS: Postural sway was reduced by the controller in two of the subjects, and mean effective reach was increased in three subjects and decreased for one. Analysis of the major direction of motion showed return to upright movements were quickened by 0.17 to 0.32 s. A 15 to 25% improvement over low/no stimulation was observed for four subjects. CONCLUSION: These results suggest that feedback control of neural stimulation is a viable way to maintain upright seated posture by facilitating trunk movements necessary to complete reaching tasks in individuals with SCI. Replication of these findings on a larger number of subjects would be necessary for generalization to the various segments of the SCI population.


Subject(s)
Activities of Daily Living , Spinal Cord Injuries , Humans , Feasibility Studies , Posture/physiology , Physical Therapy Modalities
5.
Sensors (Basel) ; 22(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36236788

ABSTRACT

Feedback control of functional neuromuscular stimulation has the potential to improve daily function for individuals with spinal cord injuries (SCIs) by enhancing seated stability. Our fully implanted networked neuroprosthesis (NNP) can provide real-time feedback signals for controlling the trunk through accelerometers embedded in modules distributed throughout the trunk. Typically, inertial sensors are aligned with the relevant body segment. However, NNP implanted modules are placed according to surgical constraints and their precise locations and orientations are generally unknown. We have developed a method for calibrating multiple randomly oriented accelerometers and fusing their signals into a measure of trunk orientation. Six accelerometers were externally attached in random orientations to the trunks of six individuals with SCI. Calibration with an optical motion capture system resulted in RMSE below 5° and correlation coefficients above 0.97. Calibration with a handheld goniometer resulted in RMSE of 7° and correlation coefficients above 0.93. Our method can obtain trunk orientation from a network of sensors without a priori knowledge of their relationships to the body anatomical axes. The results of this study will be invaluable in the design of feedback control systems for stabilizing the trunk of individuals with SCI in combination with the NNP implanted technology.


Subject(s)
Muscle, Skeletal , Spinal Cord Injuries , Accelerometry , Humans , Motion , Muscle, Skeletal/physiology , Posture/physiology
6.
J Appl Biomech ; 37(5): 415-424, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34453018

ABSTRACT

Estimating center of mass (COM) through sensor measurements is done to maintain walking and standing stability with exoskeletons. The authors present a method for estimating COM kinematics through an artificial neural network, which was trained by minimizing the mean squared error between COM displacements measured by a gold-standard motion capture system and recorded acceleration signals from body-mounted accelerometers. A total of 5 able-bodied participants were destabilized during standing through: (1) unexpected perturbations caused by 4 linear actuators pulling on the waist and (2) volitionally moving weighted jars on a shelf. Each movement type was averaged across all participants. The algorithm's performance was quantified by the root mean square error and coefficient of determination (R2) calculated from both the entire trial and during each perturbation type. Throughout the trials and movement types, the average coefficient of determination was 0.83, with 89% of the movements with R2 > .70, while the average root mean square error ranged between 7.3% and 22.0%, corresponding to 0.5- and 0.94-cm error in both the coronal and sagittal planes. COM can be estimated in real time for balance control of exoskeletons for individuals with a spinal cord injury, and the procedure can be generalized for other gait studies.


Subject(s)
Gait , Postural Balance , Accelerometry , Biomechanical Phenomena , Humans , Walking
7.
J Neuroeng Rehabil ; 17(1): 95, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32664972

ABSTRACT

BACKGROUND: Peripheral nerve stimulation with implanted nerve cuff electrodes can restore standing, stepping and other functions to individuals with spinal cord injury (SCI). We performed the first study to evaluate the clinical electrodiagnostic changes due to electrode implantation acutely, chronic presence on the nerve peri- and post-operatively, and long-term delivery of electrical stimulation. METHODS: A man with bilateral lower extremity paralysis secondary to cervical SCI sustained 5 years prior to enrollment received an implanted standing neuroprosthesis including composite flat interface nerve electrodes (C-FINEs) electrodes implanted around the proximal femoral nerves near the inguinal ligaments. Electromyography quantified neurophysiology preoperatively, intraoperatively, and through 1 year postoperatively. Stimulation charge thresholds, evoked knee extension moments, and weight distribution during standing quantified neuroprosthesis function over the same interval. RESULTS: Femoral compound motor unit action potentials increased 31% in amplitude and 34% in area while evoked knee extension moments increased significantly (p < 0.01) by 79% over 1 year of rehabilitation with standing and quadriceps exercises. Charge thresholds were low and stable, averaging 19.7 nC ± 6.2 (SEM). Changes in saphenous nerve action potentials and needle electromyography suggested minor nerve irritation perioperatively. CONCLUSIONS: This is the first human trial reporting acute and chronic neurophysiologic changes due to application of and stimulation through nerve cuff electrodes. Electrodiagnostics indicated preserved nerve health with strengthened responses following stimulated exercise. Temporary electrodiagnostic changes suggest minor nerve irritation only intra- and peri-operatively, not continuing chronically nor impacting function. These outcomes follow implantation of a neuroprosthesis enabling standing and demonstrate the ability to safely implant electrodes on the proximal femoral nerve close to the inguinal ligament. We demonstrate the electrodiagnostic findings that can be expected from implanting nerve cuff electrodes and their time-course for resolution, potentially applicable to prostheses modulating other peripheral nerves and functions. TRIAL REGISTRATION: ClinicalTrials.gov NCT01923662 , retrospectively registered August 15, 2013.


Subject(s)
Electric Stimulation Therapy/methods , Electrodes, Implanted/adverse effects , Femoral Nerve/physiology , Neural Prostheses/adverse effects , Action Potentials , Adult , Biomechanical Phenomena , Electric Stimulation Therapy/adverse effects , Electrodiagnosis , Electromyography , Humans , Knee , Male , Muscle Strength , Paralysis/rehabilitation , Paraplegia/rehabilitation , Postoperative Complications/epidemiology , Spinal Cord Injuries/rehabilitation
8.
Arch Phys Med Rehabil ; 99(2): 289-298, 2018 02.
Article in English | MEDLINE | ID: mdl-28899825

ABSTRACT

OBJECTIVE: To quantify the long-term (>2y) effects of lower extremity (LE) neuroprostheses (NPs) for standing, transfers, stepping, and seated stability after spinal cord injury. DESIGN: Single-subject design case series with participants acting as their own concurrent controls, including retrospective data review. SETTING: Hospital-based clinical biomechanics laboratory with experienced (>20y in the field) research biomedical engineers, a physical therapist, and medical monitoring review. PARTICIPANTS: Long-term (6.2±2.7y) at-home users (N=22; 19 men, 3 women) of implanted NPs for trunk and LE function with chronic (14.4±7.1y) spinal cord injury resulting in full or partial paralysis. INTERVENTIONS: Technical and clinical performance measurements, along with user satisfaction surveys. MAIN OUTCOME MEASURES: Knee extension moment, maximum standing time, body weight supported by lower extremities, 3 functional standing tasks, 2 satisfaction surveys, NP usage, and stability of implanted components. RESULTS: Stimulated knee extension strength and functional capabilities were maintained, with 94% of implant recipients reporting being very or moderately satisfied with their system. More than half (60%) of the participants were still using their implanted NPs for exercise and function for >10min/d on nearly half or more of the days monitored; however, maximum standing times and percentage body weight through LEs decreased slightly over the follow-up interval. Stimulus thresholds were uniformly stable. Six-year survival rates for the first-generation implanted pulse generator (IPG) and epimysial electrodes were close to 90%, whereas those for the second-generation IPG along with the intramuscular and nerve cuff electrodes were >98%. CONCLUSIONS: Objective and subjective measures of the technical and clinical performances of implanted LE NPs generally remained consistent for 22 participants after an average of 6 years of unsupervised use at home. These findings suggest that implanted LE NPs can provide lasting benefits that recipients value.


Subject(s)
Lower Extremity/physiopathology , Neural Prostheses , Paraplegia/physiopathology , Paraplegia/rehabilitation , Patient Satisfaction , Posture/physiology , Spinal Cord Injuries/physiopathology , Activities of Daily Living , Adult , Biomechanical Phenomena , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Surveys and Questionnaires , Treatment Outcome
9.
J Neuroeng Rehabil ; 15(1): 17, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29530053

ABSTRACT

BACKGROUND: The leading cause of injury for manual wheelchair users are tips and falls caused by unexpected destabilizing events encountered during everyday activities. The purpose of this study was to determine the feasibility of automatically restoring seated stability to manual wheelchair users with spinal cord injury (SCI) via a threshold-based system to activate the hip and trunk muscles with electrical stimulation during potentially destabilizing events. METHODS: We detected and classified potentially destabilizing sudden stops and turns with a wheelchair-mounted wireless inertial measurement unit (IMU), and then applied neural stimulation to activate the appropriate muscles to resist trunk movement and restore seated stability. After modeling and preliminary testing to determine the appropriate inertial signatures to discriminate between events and reliably trigger stimulation, the system was implemented and evaluated in real-time on manual wheelchair users with SCI. Three participants completed simulated collision events and four participants completed simulated rapid turns. Data were analyzed as a series of individual case studies with subjects acting as their own controls with and without the system active. RESULTS: The controller achieved 93% accuracy in detecting collisions and right turns, and 100% accuracy in left turn detection. Two of the three subjects who participated in collision testing with stimulation experienced significantly decreased maximum anterior-posterior trunk angles (p < 0.05). Similar results were obtained with implanted and surface stimulation systems. CONCLUSIONS: This study demonstrates the feasibility of a neural stimulation control system based on simple inertial measurements to improve trunk stability and overall safety of people with spinal cord injuries during manual wheelchair propulsion. Further studies are required to determine clinical utility in real world situations and generalizability to the broader SCI or other population of manual or powered wheelchair users. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT01474148 . Registered 11/08/2011 retrospectively registered.


Subject(s)
Electric Stimulation Therapy/methods , Postural Balance/physiology , Sitting Position , Spinal Cord Injuries , Wheelchairs , Accidental Falls/prevention & control , Adult , Biomechanical Phenomena , Disabled Persons , Equipment Design/methods , Female , Humans , Male , Middle Aged , Retrospective Studies , Wheelchairs/adverse effects
10.
J Neuroeng Rehabil ; 14(1): 118, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29149885

ABSTRACT

The reduction in physical activity following a spinal cord injury often leads to a decline in mental and physical health. Developing an exercise program that is effective and enjoyable is paramount for this population. Although functional electrical stimulation (FES) stationary cycling has been utilized in rehabilitation settings, implementing an overground cycling program for those with spinal cord injuries has greater technical challenges. Recently our laboratory team focused on training five individuals with compete spinal cord injuries utilizing an implanted pulse generator for an overground FES bike race in CYBATHLON 2016 held in Zurich, Switzerland. The advancements in muscle strength and endurance and ultimately cycling power our pilots made during this training period not only helped propel our competing pilot to win gold at the CYBATHLON 2016, but allowed our pilots to ride their bikes outside within their communities. Such a positive outcome has encouraged us to put effort into developing more widespread use of FES overground cycling as a rehabilitative tool for those with spinal cord injuries. This commentary will describe our approach to the CYBATHLON 2016 including technological advancements, bike design and the training program.


Subject(s)
Bicycling , Electric Stimulation Therapy/methods , Exercise Therapy/methods , Spinal Cord Injuries/rehabilitation , Female , Humans , Male , Middle Aged
11.
J Neuroeng Rehabil ; 14(1): 54, 2017 06 10.
Article in English | MEDLINE | ID: mdl-28601095

ABSTRACT

BACKGROUND: Implanted motor system neuroprostheses can be effective at increasing personal mobility of persons paralyzed by spinal cord injuries. However, currently available neural stimulation systems for standing employ patterns of constant activation and are unreactive to changing postural demands. METHODS: In this work, we developed a closed-loop controller for detecting forward-directed body disturbances and initiating a stabilizing step in a person with spinal cord injury. Forward-directed pulls at the waist were detected with three body-mounted triaxial accelerometers. A finite state machine was designed and tested to trigger a postural response and apply stimulation to appropriate muscles so as to produce a protective step when the simplified jerk signal exceeded predetermined thresholds. RESULTS: The controller effectively initiated steps for all perturbations with magnitude between 10 and 17.5 s body weight, and initiated a postural response with occasional steps at 5% body weight. For perturbations at 15 and 17.5% body weight, the dynamic responses of the subject exhibited very similar component time periods when compared with able-bodied subjects undergoing similar postural perturbations. Additionally, the reactive step occurred faster for stronger perturbations than for weaker ones (p < .005, unequal varience t-test.) CONCLUSIONS: This research marks progress towards a controller which can improve the safety and independence of persons with spinal cord injury using implanted neuroprostheses for standing.


Subject(s)
Electric Stimulation , Neural Prostheses , Walking , Accelerometry , Algorithms , Biomechanical Phenomena , Electrodes, Implanted , Humans , Male , Middle Aged , Muscle, Skeletal , Paraplegia/rehabilitation , Physical Therapy Modalities , Postural Balance , Spinal Cord Injuries/rehabilitation
12.
J Neuroeng Rehabil ; 14(1): 70, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28693584

ABSTRACT

BACKGROUND: Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. METHODS: Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. RESULTS: In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. CONCLUSIONS: The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option for long-term clinical use on human peripheral nerves in implanted neuroprostheses.


Subject(s)
Electric Stimulation Therapy/instrumentation , Electrodes, Implanted , Neural Prostheses , Peripheral Nerves , Femoral Nerve , Follow-Up Studies , Foot , Gait Disorders, Neurologic/prevention & control , Humans , Motor Neurons , Muscle Fibers, Skeletal , Peripheral Nervous System Diseases/rehabilitation , Recruitment, Neurophysiological , Tibial Nerve , Treatment Outcome
13.
J Neuroeng Rehabil ; 14(1): 48, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28558835

ABSTRACT

BACKGROUND: Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI. METHODS: The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance. RESULTS: The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°-20.8° and 14.0°-43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min. CONCLUSIONS: A self-contained muscle-driven exoskeleton was a feasible intervention to restore stepping in individuals with paraplegia due to SCI. The untethered hybrid system was capable of adjusting to different individuals' needs to appropriately coordinate exoskeletal constraints with muscle activation using a sensor-driven FSM for stepping. Further improvements for out-of-the-laboratory use should include implantation of plantar flexor muscles to improve walking speed and power assist as needed at the hips and knees to maintain walking as muscles fatigue.


Subject(s)
Electric Stimulation Therapy/instrumentation , Exoskeleton Device , Paraplegia/rehabilitation , Spinal Cord Injuries/rehabilitation , Adult , Female , Humans , Lower Extremity/physiopathology , Male , Paraplegia/etiology , Spinal Cord Injuries/complications , Walking/physiology
14.
J Neuroeng Rehabil ; 13: 27, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26979386

ABSTRACT

BACKGROUND: Users of neuroprostheses employing electrical stimulation (ES) generally complete the stand-to-sit (STS) maneuver with high knee angular velocities, increased upper limb support forces, and high peak impact forces at initial contact with the chair. Controlling the knee during STS descent is challenging in individuals with spinal cord injury (SCI) due to the decreasing joint moment available with increased knee angle in response to ES. METHODS: The goal of this study was to investigate the effects of incorporating either (1) a coupling mechanism that coordinates hip and knee flexion or (2) a mechanism that damps knee motion to keep the knee angular velocity constant during the STS transition. The coupling and damping were achieved by hydraulic orthotic mechanisms. Two subjects with SCI were enrolled and each served as their own controls when characterizing the performance of each mechanism during STS as compared to stimulation alone. Outcome measures such as hip-knee angle, knee angular velocity, upper limb support force, and impact force were analyzed to determine the effectiveness of the two mechanisms in providing controlled STS. RESULTS: The coordination between the hip and knee joints improved with each orthotic mechanism. The damping and hip-knee coupling mechanisms caused the hip and knee joint ratios of 1:1.1 and 1:0.99, respectively, which approached the 1:1 coordination ratio observed in nondisabled individuals during STS maneuver. The knee damping mechanism provided lower (p < 0.001) and a more constant knee angular velocity than the hip-knee coupling mechanism over the knee range of motion. Both the coupling and damping mechanisms were similarly effective at reducing upper limb support forces by 70 % (p < 0.001) and impact force by half (p ≤ 0.001) as compared to sitting down with stimulation alone. CONCLUSIONS: Orthoses imposing simple kinematic constraints, such as 1:1 hip-knee coupling or knee damping, can normalize upper limb support forces, peak knee angular velocity, and peak impact force during the STS maneuvers.


Subject(s)
Orthotic Devices , Posture/physiology , Psychomotor Performance/physiology , Spinal Cord Injuries/rehabilitation , Adult , Biomechanical Phenomena , Female , Hip Joint/physiology , Humans , Knee Joint/physiology , Male , Range of Motion, Articular
15.
J Neuroeng Rehabil ; 12: 8, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25608888

ABSTRACT

BACKGROUND: A major desire of individuals with spinal cord injury (SCI) is the ability to maintain a stable trunk while in a seated position. Such stability is invaluable during many activities of daily living (ADL) such as regular work in the home and office environments, wheelchair propulsion and driving a vehicle. Functional neuromuscular stimulation (FNS) has the ability to restore function to paralyzed muscles by application of measured low-level currents to the nerves serving those muscles. METHODS: A feedback control system for maintaining seated balance under external perturbations was designed and tested in individuals with thoracic and cervical level spinal cord injuries. The control system relied on a signal related to the tilt of the trunk from the vertical position (which varied between 1.0 ≡ erect posture and 0.0 ≡ most forward flexed posture) derived from a sensor fixed to the sternum to activate the user's own hip and trunk extensor muscles via an implanted neuroprosthesis. A proportional-derivative controller modulated stimulation between trunk tilt values indicating deviation from the erect posture and maximum desired forward flexion. Tests were carried out with external perturbation forces set at 35%, 40% and 45% body-weight (BW) and maximal forward trunk tilt flexion thresholds set at 0.85, 0.75 and 0.70. RESULTS: Preliminary tests in a case series of five subjects show that the controller could maintain trunk stability in the sagittal plane for perturbations up to 45% of body weight and for flexion thresholds as low as 0.7. The mean settling time varied across subjects from 0.5(±0.4) and 2.0 (±1.1) seconds. Mean response time of the feedback control system varied from 393(±38) ms and 536(±84) ms across the cohort. CONCLUSIONS: The results show the high potential for robust control of seated balance against nominal perturbations in individuals with spinal cord injury and indicates that trunk control with FNS is a promising intervention for individuals with SCI.


Subject(s)
Neural Prostheses , Postural Balance , Spinal Cord Injuries/rehabilitation , Activities of Daily Living , Adult , Algorithms , Biomechanical Phenomena , Cervical Vertebrae/injuries , Electric Stimulation , Feedback, Physiological , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Paralysis/physiopathology , Paralysis/rehabilitation , Reaction Time , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae/injuries , Torso/physiopathology
16.
J Appl Biomech ; 31(4): 221-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25780873

ABSTRACT

The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.


Subject(s)
Postural Balance/physiology , Spinal Cord Injuries/physiopathology , Torso/physiology , Adult , Female , Humans , Male , Movement/physiology , Paralysis/physiopathology , Posture/physiology
17.
Article in English | MEDLINE | ID: mdl-38090847

ABSTRACT

Injury or disease often compromise walking dynamics and negatively impact quality of life and independence. Assessing methods to restore or improve pathological gait can be expedited by examining a global parameter that reflects overall musculoskeletal control. Center of mass (CoM) kinematics follow well-defined trajectories during unimpaired gait, and change predictably with various gait pathologies. We propose a method to estimate CoM trajectories from inertial measurement units (IMUs) using a bidirectional Long Short-Term Memory neural network to evaluate rehabilitation interventions and outcomes. Five non-disabled volunteers participated in a single session of various dynamic walking trials with IMUs mounted on various body segments. A neural network trained with data from four of the five volunteers through a leave-one-subject out cross validation estimated the CoM with average root mean square errors (RMSEs) of 1.44cm, 1.15cm, and 0.40cm in the mediolateral (ML), anteroposterior (AP), and inferior/superior (IS) directions respectively. The impact of number and location of IMUs on network prediction accuracy was determined via principal component analysis. Comparing across all configurations, three to five IMUs located on the legs and medial trunk were the most promising reduced sensor sets for achieving CoM estimates suitable for outcome assessment. Lastly, the networks were tested on data from an individual with hemiparesis with the greatest error increase in the ML direction, which could stem from asymmetric gait. These results provide a framework for assessing gait deviations after disease or injury and evaluating rehabilitation interventions intended to normalize gait pathologies.


Subject(s)
Gait , Quality of Life , Humans , Walking , Neural Networks, Computer , Biomechanical Phenomena
18.
Arch Phys Med Rehabil ; 94(9): 1766-75, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23500182

ABSTRACT

OBJECTIVE: To determine the stimulated strength of the paralyzed gluteal and paraspinal muscles and their effects on the seated function of individuals with paralysis. DESIGN: Case series with subjects acting as their own concurrent controls. SETTING: Hospital-based clinical biomechanics laboratory. PARTICIPANTS: Users (N=8) of implanted neuroprostheses for lower extremity function with low-cervical or thoracic level injuries. INTERVENTIONS: Dynamometry and digital motion capture both with and without stimulation to the hip and trunk muscles. MAIN OUTCOME MEASURES: Isometric trunk extension moment at 0°, 15°, and 30° of flexion; seated stability in terms of simulated isokinetic rowing; pelvic tilt, shoulder height, loaded and unloaded bimanual reaching to different heights, and subjective ratings of difficulty during unsupported sitting. RESULTS: Stimulation produced significant increases in mean trunk extension moment (9.2±9.5Nm, P<.001) and rowing force (27.4±23.1N, P<.012) over baseline volitional values. Similarly, stimulation induced positive changes in average pelvic tilt (16.7±15.7°) and shoulder height (2.2±2.5cm) during quiet sitting and bimanual reaching, and increased mean reach distance (5.5±6.6cm) over all subjects, target heights, and loading conditions. Subjects consistently rated tasks with stimulation easier than voluntary effort alone. CONCLUSIONS: In spite of considerable intersubject variability, stabilizing the paralyzed trunk with electrical stimulation can positively impact seated posture, extend forward reach, and allow exertion of larger forces on objects in the environment.


Subject(s)
Electric Stimulation Therapy/methods , Hip , Muscle, Skeletal/physiopathology , Spinal Cord Injuries/rehabilitation , Torso , Biomechanical Phenomena , Female , Humans , Male , Muscle Strength Dynamometer , Posture
19.
Arch Phys Med Rehabil ; 94(10): 1997-2005, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23628377

ABSTRACT

OBJECTIVE: To quantify the effects of stabilizing the paralyzed trunk and pelvis with electrical stimulation on manual wheelchair propulsion. DESIGN: Single-subject design case series with subjects acting as their own concurrent controls. SETTING: Hospital-based clinical biomechanics laboratory. PARTICIPANTS: Individuals (N=6; 4 men, 2 women; mean age ± SD, 46 ± 10.8y) who were long-time users (6.1 ± 3.9y) of implanted neuroprostheses for lower extremity function and had chronic (8.6 ± 2.8y) midcervical- or thoracic-level injuries (C6-T10). INTERVENTIONS: Continuous low-level stimulation to the hip (gluteus maximus, posterior adductor, or hamstrings) and trunk extensor (lumbar erector spinae and/or quadratus lumborum) muscles with implanted intramuscular electrodes. MAIN OUTCOME MEASURES: Pushrim kinetics (peak resultant force, fraction effective force), kinematics (cadence, stroke length, maximum forward lean), and peak shoulder moment at preferred speed over 10-m level surface; speed, pushrim kinetics, and subjective ratings of effort for level 100-m sprints and up a 30.5-m ramp of approximately 5% grade. RESULTS: Three of 5 subjects demonstrated reduced peak resultant pushrim forces (P≤.014) and improved efficiency (P≤.048) with stimulation during self-paced level propulsion. Peak sagittal shoulder moment remained unchanged in 3 subjects and increased in 2 others (P<.001). Maximal forward trunk lean also increased by 19% to 26% (P<.001) with stimulation in these 3 subjects. Stroke lengths were unchanged by stimulation in all subjects, and 2 showed extremely small (5%) but statistically significant increases in cadence (P≤.021). Performance measures for sprints and inclines were generally unchanged with stimulation; however, subjects consistently rated propulsion with stimulation to be easier for both surfaces. CONCLUSIONS: Stabilizing the pelvis and trunk with low levels of continuous electrical stimulation to the lumbar trunk and hip extensors can positively impact the mechanics of manual wheelchair propulsion and reduce both perceived and physical measures of effort.


Subject(s)
Electric Stimulation Therapy/methods , Spinal Cord Injuries/rehabilitation , Wheelchairs , Adult , Biomechanical Phenomena , Female , Hip/physiopathology , Humans , Lumbosacral Region/physiopathology , Male , Middle Aged , Shoulder/physiopathology , Torso/physiopathology
20.
J Neuroeng Rehabil ; 10: 25, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23442372

ABSTRACT

BACKGROUND: Multi-contact stimulating electrodes are gaining acceptance as a means for interfacing with the peripheral nervous system. These electrodes can potentially activate many independent populations of motor units within a single peripheral nerve, but quantifying their recruitment properties and the overlap in stimulation between contacts is difficult and time consuming. Further, current methods for quantifying overlap between contacts are ambiguous and can lead to suboptimal selective stimulation parameters. This study describes a novel method for optimizing stimulation parameters for multi-contact peripheral stimulating electrodes to produce strong, selective muscle contractions. The method is tested with four-contact spiral nerve-cuff electrodes implanted on bilateral femoral nerves of two individuals with spinal cord injury, but it is designed to be extendable to other electrode technologies with higher densities of contacts. METHODS: To optimize selective stimulation parameters for multi-contact electrodes, first, recruitment and overlap are characterized for all contacts within an electrode. Recruitment is measured with the twitch response to single stimulus pulses, and overlap between pairs of contacts is quantified by the deviation in their combined response from linear addition of individual responses. Simple mathematical models are fit to recruitment and overlap data, and a cost function is defined to maximize recruitment and minimize overlap between all contacts. RESULTS: Results are presented for four-contact nerve-cuff electrodes stimulating bilateral femoral nerves of two human subjects with spinal cord injury. Knee extension moments between 11.6 and 43.2 Nm were achieved with selective stimulation through multiple contacts of each nerve-cuff with less than 10% overlap between pairs of contacts. The overlap in stimulation measured in response to selective stimulation parameters was stable at multiple repeated time points after implantation. CONCLUSIONS: These results suggest that the method described here can provide an automated means of determining stimulus parameters to achieve strong muscle contractions via selective stimulation through multi-contact peripheral nerve electrodes.


Subject(s)
Electric Stimulation/methods , Electrodes, Implanted , Algorithms , Femoral Nerve/physiology , Humans , Joints/physiology , Knee/innervation , Knee/physiology , Models, Statistical , Motor Neurons/physiology , Movement/physiology , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Peripheral Nervous System/physiology , Recruitment, Neurophysiological/physiology , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL