Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Curr Osteoporos Rep ; 22(4): 367-377, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922359

ABSTRACT

PURPOSE OF REVIEW: Along with a strong impact on skeletal integrity, bone marrow adipose tissue (BMAT) is an important modulator of the adult hematopoietic system. This review will summarize the current knowledge on the causal relationship between bone marrow (BM) adipogenesis and the development and progression of hematologic malignancies. RECENT FINDINGS: BM adipocytes (BMAds) support a number of processes promoting oncogenesis, including the evolution of clonal hematopoiesis, malignant cell survival, proliferation, angiogenesis, and chemoresistance. In addition, leukemic cells manipulate surrounding BMAds by promoting lipolysis and release of free fatty acids, which are then utilized by leukemic cells via ß-oxidation. Therefore, limiting BM adipogenesis, blocking BMAd-derived adipokines, or lipid metabolism obstruction have been considered as potential treatment options for hematological malignancies. Leukemic stem cells rely heavily on BMAds within the structural BM microenvironment for necessary signals which foster disease progression. Further development of 3D constructs resembling BMAT at different skeletal regions are critical to better understand these relationships in geometric space and may provide essential insight into the development of hematologic malignancies within the BM niche. In turn, these mechanisms provide promising potential as novel approaches to targeting the microenvironment with new therapeutic strategies.


Subject(s)
Adipocytes , Adipogenesis , Adipose Tissue , Bone Marrow , Hematologic Neoplasms , Humans , Adipocytes/metabolism , Tumor Microenvironment , Hematopoiesis
2.
J Cell Physiol ; 236(11): 7322-7341, 2021 11.
Article in English | MEDLINE | ID: mdl-33934350

ABSTRACT

Mesenchymal stem cells (MSCs) have been identified within dental pulp tissues of exfoliated deciduous (SHEDs) and permanent (DPSCs) teeth. Although differences in their proliferative and differentiation properties were revealed, variability in SHEDs and DPSCs responsiveness to growth factors and cytokines have not been studied before. Here, we investigated the influence of interleukin-17 (IL-17) and basic fibroblast growth factor (bFGF) on stemness features of SHEDs and DPSCs by analyzing their proliferation, clonogenicity, cell cycle progression, pluripotency markers expression and differentiation after 7-day treatment. Results indicated that IL-17 and bFGF differently affected SHEDs and DPSCs proliferation and clonogenicity, since bFGF increased proliferative and clonogenic potential of both cell types, while IL-17 similarly affected SHEDs, exerting no effects on adult counterparts DPSCs. In addition, both factors stimulated NANOG, OCT4, and SOX2 pluripotency markers expression in SHEDs and DPSCs showing diverse intracellular expression patterns dependent on MSCs type. As for the differentiation capacity, both factors displayed comparable effects on SHEDs and DPSCs, including stimulatory effect of IL-17 on early osteogenesis in contrast to the strong inhibitory effect showed for bFGF, while having no impact on SHEDs and DPSCs chondrogenesis. Moreover, bFGF combined with IL-17 reduced CD90 and stimulated CD73 expression on both types of MSCs, whereas each factor induced IL-6 expression indicating its' role in IL-17/bFGF-modulated properties of SHEDs and DPSCs. All these data demonstrated that dental pulp MSCs from primary and permanent teeth exert intrinsic features, providing novel evidence on how IL-17 and bFGF affect stem cell properties important for regeneration of dental pulp at different ages.


Subject(s)
Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dental Pulp/drug effects , Fibroblast Growth Factor 2/pharmacology , Interleukin-17/pharmacology , Mesenchymal Stem Cells/drug effects , Tooth Exfoliation , Tooth, Deciduous/drug effects , Adult , Cells, Cultured , Child , Chondrogenesis/drug effects , Dental Pulp/cytology , Dental Pulp/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Phenotype , Tooth, Deciduous/cytology , Tooth, Deciduous/metabolism , Young Adult
3.
Dev Dyn ; 247(3): 359-367, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28850772

ABSTRACT

Due to coexistence of stromal and epithelial tumor cells, their dynamic interactions have been widely recognized as significant cellular components to the tumor tissue integrity. Initiation and outcome of epithelial to mesenchymal transition (EMT) in tumor cells are dependent on their interaction with adjacent or recruited mesenchymal stromal cells (MSCs). A plethora of mechanisms are involved in MSCs-controlled employment of the developmental processes of EMT that contribute to loss of epithelial cell phenotype and acquisition of stemness, invasiveness and chemoresistance of tumor cells. Interplay of MSCs with tumor cells, including interchange of soluble biomolecules, plasma membrane structures, cytoplasmic content, and organelles, is established through cell-cell contact and/or by means of paracrine signaling. The main focus of this review is to summarize knowledge about involvement of MSCs in cancer cell EMT. Understanding the underlying cellular and molecular mechanism involved in the interplay between MSCs and cancer EMT is essential for development of effective therapy approaches, which in combination with current treatments may improve the control of tumor progression. Developmental Dynamics 247:359-367, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Epithelial-Mesenchymal Transition , Mesenchymal Stem Cells/pathology , Neoplasms/pathology , Animals
4.
J Cell Physiol ; 233(1): 447-462, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28295277

ABSTRACT

Lipopolysaccharide (LPS) is a pertinent deleterious factor in oral microenvironment for cells which are carriers of regenerative processes. The aim of this study was to investigate the emerging in vitro effects of LPS (Escherichia coli) on human periodontal ligament stem cell (PDLSC) functions and associated signaling pathways. We demonstrated that LPS did not affect immunophenotype, proliferation, viability, and cell cycle of PDLSCs. However, LPS modified lineage commitment of PDLSCs inhibiting osteogenesis by downregulating Runx2, ALP, and Ocn mRNA expression, while stimulating chondrogenesis and adipogenesis by upregulating Sox9 and PPARγ mRNA expression. LPS promoted myofibroblast-like phenotype of PDLSCs, since it significantly enhanced PDLSC contractility, as well as protein and/or gene expression of TGF-ß, fibronectin (FN), α-SMA, and NG2. LPS also increased protein and gene expression levels of anti-inflammatory COX-2 and pro-inflammatory IL-6 molecules in PDLSCs. Inhibition of peripheral blood mononuclear cells (MNCs) transendothelial migration in presence of LPS-treated PDLSCs was accompanied by the reduction of CD29 expression within MNCs. However, LPS treatment did not change the inhibitory effect of PDLSCs on mitogen-stimulated proliferation of CD4+ and the ratio of CD4+ CD25high /CD4+ CD25low lymphocytes. LPS-treated PDLSCs did not change the frequency of CD34+ and CD45+ cells, but decreased the frequency of CD33+ and CD14+ myeloid cells within MNCs. Moreover, LPS treatment attenuated the stimulatory effect of PDLSCs on CFC activity of MNCs, predominantly the CFU-GM number. The results indicated that LPS-activated ERK1,2 was at least partly involved in the observed effects on PDLSC differentiation capacity, acquisition of myofibroblastic attributes, and changes of their immunomodulatory features.


Subject(s)
Cell Differentiation/drug effects , Cell Lineage/drug effects , Lipopolysaccharides/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myofibroblasts/drug effects , Periodontal Ligament/drug effects , Stem Cells/drug effects , Adipogenesis/drug effects , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cellular Microenvironment , Chondrogenesis/drug effects , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Myofibroblasts/enzymology , Myofibroblasts/immunology , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/drug effects , PPAR gamma/genetics , PPAR gamma/metabolism , Periodontal Ligament/enzymology , Periodontal Ligament/immunology , Phenotype , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction/drug effects , Stem Cells/enzymology , Stem Cells/immunology , Time Factors , Transendothelial and Transepithelial Migration/drug effects
6.
Biochim Biophys Acta ; 1853(2): 431-44, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25433194

ABSTRACT

Mesenchymal stem cells (MSCs) have the potential to migrate toward damaged tissues increasing tissue regeneration. Interleukin-17 (IL-17) is a proinflammatory cytokine with pleiotropic effects associated with many inflammatory diseases. Although IL-17 can modulate MSC functions, its capacity to regulate MSC migration is not well elucidated so far. Here, we studied the role of IL-17 on peripheral blood (PB) derived MSC migration and transmigration across endothelial cells. IL-17 increased PB-MSC migration in a wound healing assay as well as cell mobilization from collagen gel. Concomitantly IL-17 induced the expression of urokinase type plasminogen activator (uPA) without affecting matrix metalloproteinase expression. The incremented uPA expression mediated the capacity of IL-17 to enhance PB-MSC migration in a ERK1,2 MAPK dependent way. Also, IL-17 induced PB-MSC migration alongside with changes in cell polarization and uPA localization in cell protrusions. Moreover, IL-17 increased PB-MSC adhesion to endothelial cells and transendothelial migration, as well as increased the capacity of PB-MSC adhesion to fibronectin, in an uPA-dependent fashion. Therefore, our data suggested that IL-17 may act as chemotropic factor for PB-MSCs by incrementing cell motility and uPA expression during inflammation development.


Subject(s)
Blood Cells/cytology , Cell Movement/drug effects , Interleukin-17/pharmacology , Mesenchymal Stem Cells/cytology , Transendothelial and Transepithelial Migration/drug effects , Urokinase-Type Plasminogen Activator/metabolism , Animals , Blood Cells/drug effects , Blood Cells/enzymology , Cell Adhesion/drug effects , Cell Line , Cell Polarity/drug effects , Collagen/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibronectins/metabolism , Humans , Immunophenotyping , Matrix Metalloproteinases/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/enzymology , Mice , Receptors, Interleukin-17/metabolism
7.
IUBMB Life ; 68(3): 190-200, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26805406

ABSTRACT

Mesenchymal stem cells from human adipose tissue (hASCs) are proposed as suitable tools for soft tissue engineering and reconstruction. Although it is known that hASCs have the ability to home to sites of inflammation and tumor niche, the role of inflammatory cytokines in the hASCs-affected tumor development is not understood. We found that interferon-γ (IFN-γ) and/or tumor necrosis factor-α (TNF-α) prime hASCs to produce soluble factors which enhance MCF-7 cell line malignancy in vitro. IFN-γ and/or TNF-α-primed hASCs produced conditioned media (CM) which induced epithelial to mesenchymal transition (EMT) of MCF-7 cells by reducing E-Cadherin and increasing Vimentin expression. Induced EMT was accompanied by increased invasion, migration, and urokinase type-plasminogen activator (uPA) expression in MCF-7 cells. These effects were mediated by increased expression of transforming growth factor-ß1(TGF-ß1) in cytokines-primed hASCs, since inhibition of type I TGF-ß1 receptor on MCF-7 cells and neutralization of TGF-ß1 disabled the CM from primed hASCs to increase EMT, cell migration, and uPA expression in MCF-7 cells. Obtained data suggested that IFN-γ and/or TNF-α primed hASCs might enhance the malignancy of MCF-7 cell line by inducing EMT, cell motility and uPA expression in these cells via TGF-ß1-Smad3 signalization, with potentially important implications in breast cancer progression.


Subject(s)
Mesenchymal Stem Cells/physiology , Transforming Growth Factor beta1/physiology , Adipose Tissue/pathology , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement , Epithelial-Mesenchymal Transition , Female , Humans , Interferon-gamma/physiology , MCF-7 Cells , Neoplasm Invasiveness , Signal Transduction , Tumor Necrosis Factor-alpha/physiology , Urokinase-Type Plasminogen Activator/physiology
8.
Mediators Inflamm ; 2016: 7314016, 2016.
Article in English | MEDLINE | ID: mdl-27630452

ABSTRACT

State of tumor microenvironment (TME) is closely linked to regulation of tumor growth and progression affecting the final outcome, refractoriness, and relapse of disease. Interactions of tumor, immune, and mesenchymal stromal/stem cells (MSCs) have been recognized as crucial for understanding tumorigenesis. Due to their outstanding features, stem cell-like properties, capacity to regulate immune response, and dynamic functional phenotype dependent on microenvironmental stimuli, MSCs have been perceived as important players in TME. Signals provided by tumor-associated chronic inflammation educate MSCs to alter their phenotype and immunomodulatory potential in favor of tumor-biased state of MSCs. Adjustment of phenotype to TME and acquisition of tumor-promoting ability by MSCs help tumor cells in maintenance of permissive TME and suppression of antitumor immune response. Potential utilization of MSCs in treatment of tumor is based on their inherent ability to home tumor tissue that makes them suitable delivery vehicles for immune-stimulating factors and vectors for targeted antitumor therapy. Here, we review data regarding intrusive effects of inflammatory TME on MSCs capacity to affect tumor development through modification of their phenotype and interactions with immune system.


Subject(s)
Mesenchymal Stem Cells/pathology , Neoplasms/pathology , Animals , Carcinogenesis/immunology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment/physiology
9.
Mediators Inflamm ; 2016: 2939658, 2016.
Article in English | MEDLINE | ID: mdl-28042204

ABSTRACT

Interleukin 17 (IL-17) is a cytokine with pleiotropic effects associated with several inflammatory diseases. Although elevated levels of IL-17 have been described in inflammatory myopathies, its role in muscle remodeling and regeneration is still unknown. Excessive extracellular matrix degradation in skeletal muscle is an important pathological consequence of many diseases involving muscle wasting. In this study, the role of IL-17 on the expression of matrix metalloproteinase- (MMP-) 9 in myoblast cells was investigated. The expression of MMP-9 after IL-17 treatment was analyzed in mouse myoblasts C2C12 cell line. The increase in MMP-9 production by IL-17 was concomitant with its capacity to inhibit myogenic differentiation of C2C12 cells. Doxycycline (Doxy) treatment protected the myogenic capacity of myoblasts from IL-17 inhibition and, moreover, increased myotubes hypertrophy. Doxy blocked the capacity of IL-17 to stimulate MMP-9 production by regulating IL-17-induced ERK1/2 MAPK activation. Our results imply that MMP-9 mediates IL-17's capacity to inhibit myoblast differentiation during inflammatory diseases and indicate that Doxy can modulate myoblast response to inflammatory induction by IL-17.


Subject(s)
Doxycycline/chemistry , Interleukin-17/metabolism , MAP Kinase Signaling System , Matrix Metalloproteinase 9/metabolism , Muscle Development , Myoblasts/cytology , Animals , Cell Differentiation , Cell Line , Gene Expression Regulation , Inflammation , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Recombinant Proteins/metabolism
10.
Cell Biol Int ; 38(2): 254-65, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24155046

ABSTRACT

Adipose tissue is an attractive source of mesenchymal stem/stromal cells (MSCs) with potential applications in reconstructive plastic surgery and regenerative medicine. The aim of this study was to characterise human adipose tissue MSCs (ASCs) derived from healthy individuals and cancer patients and to compare their interactions with tumour cells. ASCs were isolated from adipose tissue of healthy donors, breast cancer-adjacent adipose tissue of breast cancer patients and tumour-adjacent adipose tissue of non-breast cancer patients. Their proliferation, differentiation, immunophenotype and gene expression were assessed and effects on the proliferation of human breast cancer cell line MCF-7 compared. ASCs from all sources exhibited similar morphology, proliferative and differentiation potential, showing the characteristic pattern of mesenchymal surface markers expression (CD90, CD105, CD44H, CD73) and the lack of HLA-DR and hematopoietic markers (CD11a, CD33, CD45, Glycophorin-CD235a), but uneven expression of CD34. ASCs also shared a common positive gene expression of HLA-DR, HLA-A, IL-6, TGF-ß and HIF-1, but were negative for HLA-G, while the expression levels of Cox-2 and IDO-1 varied. All ASCs significantly stimulated the proliferation of MCF-7 tumour cells in direct mixed co-cultures and transwell system, although their conditioned media displayed antiproliferative activity. Data obtained showed that ASCs with similar characteristics are easily isolated from various donors and sites of origin, although ASCs could both suppress and favour tumour cells growth, emphasising the importance of cellular context within the microenvironment and pointing to the significance of safety studies to exclude any potential clinical risk of their application in regenerative medicine.


Subject(s)
Adipose Tissue/cytology , Adipose Tissue/pathology , Breast Neoplasms/pathology , MCF-7 Cells/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/pathology , Adipose Tissue/immunology , Adipose Tissue/metabolism , Breast/immunology , Breast/metabolism , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunophenotyping , MCF-7 Cells/cytology , MCF-7 Cells/immunology , MCF-7 Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism
11.
Croat Med J ; 55(1): 45-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24577826

ABSTRACT

AIM: To investigate the survival of laboratory rats after irradiation and to study the cellularity of their bone marrow and the multipotential mesenchymal stem cells (BM-MSCs) in groups treated with or without a new thiol-based radioprotector (GM2011). METHODS: Animals were irradiated by a Cobalt gamma source at 6.7 Gy. Treated animals were given i.p. GM2011 30 minutes before and 3 and 7 hours after irradiation. Controls consisted of sham irradiated animals without treatment and animals treated without irradiation. After 30 days post-irradiation, animals were sacrificed and bone marrow cells were prepared from isolated femurs. A colony forming unit-fibroblast (CFU-F) assay was performed to obtain the number of BM-MSCs. RESULTS: In the treated group, 87% of animals survived, compared to only 30% in the non-treated irradiated group. Irradiation induced significant changes in the bone marrow of the treated rats (total bone marrow cellularity was reduced by~60%--from 63 to 28 cells × 10(6)/femur and the frequency of the CFU-F per femur by~70% - from 357 to 97), however GL2011 almost completely prevented the suppressive effect observed on day 30 post-irradiation (71 cells × 10(6)/femur and 230 CFU-F/femur). CONCLUSION: Although the irradiation dosage was relatively high, GL2011 acted as a very effective new radioprotector. The recovery of the BN-MSCs and their counts support the effectiveness of the studied radioprotector.


Subject(s)
Bone Marrow/radiation effects , Mesenchymal Stem Cells/physiology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/therapeutic use , Regeneration/physiology , Animals , Cobalt Radioisotopes , Colony-Forming Units Assay , Male , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/mortality , Rats , Rats, Wistar , Survival Rate , Whole-Body Irradiation
12.
Transl Oncol ; 40: 101871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134841

ABSTRACT

Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.

13.
Biol Open ; 13(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38288785

ABSTRACT

Bone marrow adiposity (BMA) is a rapidly growing yet very young research field that is receiving worldwide attention based on its intimate relationship with skeletal and metabolic diseases, as well as hematology and cancer. Moreover, increasing numbers of young scientists and students are currently and actively working on BMA within their research projects. These developments led to the foundation of the International Bone Marrow Adiposity Society (BMAS), with the goal to promote BMA knowledge worldwide, and to train new generations of researchers interested in studying this field. Among the many initiatives supported by BMAS, there is the BMAS Summer School, inaugurated in 2021 and now at its second edition. The aim of the BMAS Summer School 2023 was to educate and train students by disseminating the latest advancement on BMA. Moreover, Summer School 2023 provided suggestions on how to write grants, deal with negative results in science, and start a laboratory, along with illustrations of alternative paths to academia. The event was animated by constructive and interactive discussions between early-career researchers and more senior scientists. In this report, we highlight key moments and lessons learned from the event.


Subject(s)
Adiposity , Bone Marrow , Humans , Adipose Tissue , Schools
14.
Tissue Eng Part C Methods ; 30(5): 193-205, 2024 May.
Article in English | MEDLINE | ID: mdl-38545771

ABSTRACT

Multiple myeloma (MM) clones reside in the bone marrow (BM), which plays a role in its survival and development. The interactions between MM and their neighboring mesenchymal stromal cells (MSCs) have been shown to promote MM growth and drug resistance. However, those interactions are often missing or misrepresented in traditional two-dimensional (2D) culture models. Application of novel three-dimensional (3D) models might recapitulate the BM niche more precisely, which will offer new insights into MM progression and survival. Here, we aimed to establish two 3D models, based on MSC spheroids and collagen droplets incorporating both MM cells and MSCs with the goal of replicating the native myeloma context of the BM niche. This approach revealed that although MSCs can spontaneously assemble spheroids with altered metabolic traits, MSC spheroid culture does not support the integration of MM cells. On the contrary, collagen-droplet culture supported the growth of both cell types. In collagen, MSC proliferation was reduced, with the correlating decrease in ATP production and Ki-67 expression, which might resemble in vivo conditions, rather than 2D abundance of nutrients and space. MSCs and MMs were distributed homogenously throughout the collagen droplet, with an apparent CXCL12 expression in MSCs. In addition, the response of MM cells to bortezomib was substantially reduced in collagen, indicating the importance of 3D culture in the investigation of myeloma cell behavior, as drug resistance is one of the most pertinent issues in cancer therapy.


Subject(s)
Collagen , Mesenchymal Stem Cells , Multiple Myeloma , Spheroids, Cellular , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Humans , Collagen/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Proliferation/drug effects , Cell Line, Tumor , Models, Biological , Cell Culture Techniques/methods
15.
Biochim Biophys Acta ; 1823(4): 838-49, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22285818

ABSTRACT

The present study evaluated the role of interleukin (IL) 17 in multilineage commitment of C2C12 myoblastic cells and investigated associated signaling pathways. The results concerning the effects on cell function showed that IL-17 inhibits the migration of C2C12 cells, while not affecting their proliferation. The data regarding the influence on differentiation demonstrated that IL-17 inhibits myogenic differentiation of C2C12 cells by down-regulating the myogenin mRNA level, myosin heavy chain expression and myotube formation, but promotes their osteogenic differentiation by up-regulating the Runt-related transcription factor 2 mRNA level, cyclooxygenase-2 expression and alkaline phosphatase activity. IL-17 exerted these effects by activating ERK1,2 mitogen activated protein kinase signaling pathway, which in turn regulated the expression of relevant genes and proteins to inhibit myogenic differentiation and induce osteogenic differentiation. Additional analysis showed that the induction of osteogenic differentiation by IL-17 is independent of BMP signaling. The results obtained demonstrate the potential of IL-17 not only to inhibit the myogenic differentiation of C2C12 myoblasts but also to convert their differentiation pathway into that of osteoblast lineage providing new insight into the capacities of IL-17 to modulate the differentiation commitment.


Subject(s)
Cell Differentiation/drug effects , Interleukin-17/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Muscle Development/drug effects , Myoblasts/cytology , Osteogenesis/drug effects , Animals , Bone Morphogenetic Proteins/metabolism , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Activation/drug effects , MAP Kinase Signaling System/drug effects , Mice , Models, Biological , Myoblasts/drug effects , Myoblasts/enzymology , Receptors, Interleukin-17/metabolism
16.
Cell Biol Int ; 37(11): 1162-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23765637

ABSTRACT

The aim of this study has been to elucidate how different oxygen levels impact the effects of Interleukin-17 (IL-17) on angiogenic properties of endothelial cells. Two endothelial cell lines, mouse MS-1 and human EA.hy 926, were grown in 20% and 3% O2 and their angiogenic abilities analyzed after IL-17 treatment: proliferation, apoptosis, migration and tubulogenesis. Expression of endothelial nitric oxide synthase (eNOS) and cyclooxygenase-2 (Cox-2) was also measured. Considering EA.hy 926 cell line, hypoxia alone reduced proliferation, survival and migration, but not their ability to form tubules. When cultured at 20% O2 , IL-17 stimulated proliferation, migration and tubulogenesis, whereas a hypoxic environment did not affect their migration and proliferation, but increased their survival and tubulogenic properties. Expression of eNOS and Cox-2 increased by both IL-17 and hypoxia, as well as with their combination. With the MS-1 cell line hypoxia did not affect proliferation, survival, migration and tubule formation. At 20% O2 , IL-17 did not alter their proliferation,but inhibited migration and stimulated tubule formation. At 3% O2 , only the stimulating effect of IL-17 on tubulogenesis was evident. The constitutive expression of eNOS was unaffected by oxygen concentrations or IL-17 supplementation, whereas both IL-17 and hypoxia upregulated Cox-2 expression. Thus the effects of IL-17 on the angiogenic properties of endothelial cells depend on both the cell line used and the oxygen concentration.


Subject(s)
Endothelial Cells/metabolism , Interleukin-17/pharmacology , Neovascularization, Physiologic/drug effects , Oxygen/pharmacology , Animals , Cell Hypoxia/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Humans , Mice , Nitric Oxide Synthase Type III/metabolism
17.
Stem Cell Rev Rep ; 19(5): 1135-1151, 2023 07.
Article in English | MEDLINE | ID: mdl-36930385

ABSTRACT

Bone marrow adipose tissue (BMAT) creates a specific microniche within multifunctional bone marrow (BM) ecosystem which imposes changes in surrounding cells and at systemic level. Moreover, BMAT contributes to spatial and temporal separation and metabolic compartmentalization of BM, thus regulating BM homeostasis and diseases. Recent findings have identified novel progenitor subsets of bone marrow adipocytes (BMAd)s recruited during the BM adipogenesis within different skeletal and hematopoietic stem cell niches. Potential of certain mesenchymal BM cells to differentiate into both osteogenic and adipogenic lineages, contributes to the complex interplay of BMAT with endosteal (osteoblastic) niche compartments as an important cellular player in bone tissue homeostasis. Targeting and ablation of BMAT cells at certain states might be an optional and promising strategy for improvement of bone health. Additionally, recent findings demonstrated spatial distribution of BMAds related to hematopoietic cells and pointed out important functional roles in the vital processes such as long-term hematopoiesis. BM adipogenesis appears to be an emergency phenomenon that follows the production of hematopoietic stem and progenitor cell niche factors, thus regulating physiological, stressed, and malignant hematopoiesis. Lipolytic and secretory activity of BMAds can influence survival and proliferation of hematopoietic cells at different maturation stages. Due to their different lipid status, constitutive and regulated BMAds are important determinants of normal and malignant hematopoietic cells. Further elucidation of cellular and molecular players involved in BMAT expansion and crosstalk with malignant cells is of paramount importance for conceiving the new therapies for improvement of BM health.


Subject(s)
Bone Marrow , Hematologic Neoplasms , Humans , Bone Marrow/metabolism , Hematopoietic Stem Cells , Ecosystem , Hematopoiesis/physiology , Obesity , Hematologic Neoplasms/metabolism
18.
Stem Cell Rev Rep ; 19(3): 713-733, 2023 04.
Article in English | MEDLINE | ID: mdl-36417151

ABSTRACT

The pro-inflammatory phase of bone healing, initiated by platelet activation and eventually hematoma formation, impacts bone marrow mesenchymal stromal cells (MSCs) in unknown ways. Here, we created platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of encapsulated MSCs in comparison to a non-inflammatory fibrin (FBR) hydrogel environment. MSCs were isolated from human bone marrow, while PRP was collected from pooled apheresis thrombocyte concentrates and used for hydrogel preparation. After their encapsulation in hydrogels for 72 h, retrieved MSCs were analyzed for immunomodulatory activities, apoptosis, stem cell properties, senescence, CD9+, CD63+ and CD81+ extracellular vesicle (EV) release, and metabolism-related changes. PRP-hydrogels stimulated immunosuppressive functions of MSCs, along with their upregulated susceptibility to cell death in communication with PBMCs and augmented caspase 3/7 activity. We found impaired clonal growth and cell cycle progression, and more pronounced ß-galactosidase activity as well as accumulation of LC3-II-positive vacuoles in PRP-MSCs. Stimuli derived from PRP-hydrogels upregulated AKT and reduced mTOR phosphorylation in MSCs, which suggests an initiation of survival-related processes. Our results showed that PRP-hydrogels might represent a metabolically stressful environment, inducing acidification of MSCs, reducing polarization of the mitochondrial membrane and increasing lipid accumulation. These features were not detected in FBR-MSCs, which showed reduced CD63+ and CD81+ EV production and maintained clonogenicity. Our data revealed that PRP-derived hematoma components cause metabolic adaptation of MSCs followed by increased immune regulatory functions. For the first time, we showed that PRP stimuli represent a survival challenge and "apoptotic priming" that are detrimental for stem cell-like growth of MSCs and important for their therapeutic consideration.


Subject(s)
Mesenchymal Stem Cells , Humans , Hydrogels
19.
Biomolecules ; 13(10)2023 09 24.
Article in English | MEDLINE | ID: mdl-37892119

ABSTRACT

Periodontitis (PD) is a degenerative, bacteria-induced chronic disease of periodontium causing bone resorption and teeth loss. It includes a strong reaction of immune cells through the secretion of proinflammatory factors such as Interleukin-17 (IL-17). PD treatment may consider systemic oral antibiotics application, including doxycycline (Dox), exhibiting antibacterial and anti-inflammatory properties along with supportive activity in wound healing, thus affecting alveolar bone metabolism. In the present study, we aimed to determine whether Dox can affect the regenerative potential of periodontal ligament mesenchymal stem cells (PDLSCs) modulated by IL-17 in terms of cell migration, osteogenic potential, bioenergetics and expression of extracellular matrix metalloproteinase 2 (MMP-2). Our findings indicate that Dox reduces the stimulatory effect of IL-17 on migration and MMP-2 expression in PDLSCs. Furthermore, Dox stimulates osteogenic differentiation of PDLSCs, annulling the inhibitory effect of IL-17 on PDLSCs osteogenesis. In addition, analyses of mitochondrial respiration reveal that Dox decreases oxygen consumption rate in PDLSCs exposed to IL-17, suggesting that changes in metabolic performance can be involved in Dox-mediated effects on PDLSCs. The pro-regenerative properties of Dox in inflammatory microenvironment candidates Dox in terms of regenerative therapy of PD-affected periodontium are observed.


Subject(s)
Matrix Metalloproteinase 2 , Periodontitis , Humans , Matrix Metalloproteinase 2/metabolism , Periodontal Ligament , Interleukin-17/metabolism , Osteogenesis , Doxycycline/pharmacology , Periodontitis/drug therapy , Stem Cells , Cell Differentiation , Cells, Cultured
20.
J Pers Med ; 12(5)2022 May 14.
Article in English | MEDLINE | ID: mdl-35629217

ABSTRACT

Aging process is associated with numerous intrinsic and extrinsic factors that contribute to the adipose tissue accumulation, atherosclerosis, immune system failures, bone fragility, and cancer [...].

SELECTION OF CITATIONS
SEARCH DETAIL