Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Tissue Eng Part C Methods ; 20(7): 553-61, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24164381

ABSTRACT

The vascularization of tissue-engineered constructs is yet an unsolved problem. Here, recent work on the decellularization of whole organs has opened new perspectives on tissue engineering. However, existing decellularization protocols last several days and derived biomatrices have only been reseeded with cells from the same tissue origin or stem cells differentiating into these types of tissue. Within the present work, we demonstrate a novel standardized, time-efficient, and reproducible protocol for the decellularization of solid tissues to derive a ready to use biomatrix within only 5 h. Furthermore, we prove that biomatrices are usable as potential scaffolds for tissue engineering of vascularized tissues, even beyond tissue and maybe even species barriers. To prove this, we seeded human primary osteoblasts into a rat kidney bioscaffold. Here, seeded cells spread homogeneously within the matrix and proliferate under dynamic culture conditions. The cells do not only maintain their original phenotype within the matrix, they also show a strong metabolic activity and remodel the biomatrix toward a bone-like extracellular matrix. Thus, the decellularization technique has the ability to become a platform technology for tissue engineering. It potentially offers a universally applicable and easily producible scaffold that addresses the yet unsolved problem of vascularization.


Subject(s)
Bone and Bones , Extracellular Matrix/chemistry , Kidney/chemistry , Osteoblasts , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Female , Human Umbilical Vein Endothelial Cells , Humans , Male , Osteoblasts/cytology , Osteoblasts/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL