Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nature ; 603(7901): 439-444, 2022 03.
Article in English | MEDLINE | ID: mdl-35296845

ABSTRACT

The introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence1-3. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents4,5. Here we describe the discovery and construction of an enzymatic cascade to MK-1454, a highly potent stimulator of interferon genes (STING) activator under study as an immuno-oncology therapeutic6,7 (ClinicalTrials.gov study NCT04220866 ). From two non-natural nucleotide monothiophosphates, MK-1454 is assembled diastereoselectively in a one-pot cascade, in which two thiotriphosphate nucleotides are simultaneously generated biocatalytically, followed by coupling and cyclization catalysed by an engineered animal cyclic guanosine-adenosine synthase (cGAS). For the thiotriphosphate synthesis, three kinase enzymes were engineered to develop a non-natural cofactor recycling system in which one thiotriphosphate serves as a cofactor in its own synthesis. This study demonstrates the substantial capacity that currently exists to use biosynthetic approaches to discover and manufacture complex, non-natural molecules.


Subject(s)
Guanosine , Nucleotidyltransferases , Adenosine , Animals , Interferons , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction
2.
Chembiochem ; 23(6): e202100570, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35104390

ABSTRACT

We present an automated NMR-guided docking workflow that can be used to generate models of protein-ligand complexes based on data from NOE NMR experiments. The first step is to generate a number of intermolecular distance constraints from experimental NOE data. Then, the ligand is docked on an ensemble of receptor structures to account for protein flexibility, and multiple poses are generated. Finally, we use the NOE-based constraints to filter and score docking poses based on the percentage of NOE constraints that are consistent with protein-ligand interatomic distances. This workflow was successfully used during a lead optimization project to generate models of synthetic protein-protein interaction (PPI) inhibitors bound to the HDM2 protein.


Subject(s)
Proteins , Binding Sites , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Conformation , Proteins/chemistry
3.
Bioorg Med Chem Lett ; 27(4): 1062-1069, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28131713

ABSTRACT

Selective inhibition of Kv1.5, which underlies the ultra-rapid delayed rectifier current, IKur, has been pursued as a treatment for atrial fibrillation. Here we describe the discovery of MK-1832, a Kv1.5 inhibitor with improved selectivity versus the off-target current IKs, whose inhibition has been associated with ventricular proarrhythmia. MK-1832 exhibits improved selectivity for IKur over IKs (>3000-fold versus 70-fold for MK-0448), consistent with an observed larger window between atrial and ventricular effects in vivo (>1800-fold versus 210-fold for MK-0448). MK-1832 also exhibits an improved preclinical pharmacokinetic profile consistent with projected once daily dosing in humans.


Subject(s)
Kv1.5 Potassium Channel/antagonists & inhibitors , Pyridines/pharmacology , Drug Discovery , Humans , Pyridines/pharmacokinetics , Structure-Activity Relationship
5.
J Med Chem ; 66(23): 15629-15647, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37967851

ABSTRACT

Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Adult , Humans , Animals , Mice , Cyclin-Dependent Kinases , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Apoptosis , Cell Cycle Checkpoints , Disease Models, Animal , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Cyclin-Dependent Kinase 9 , Neoplasms/drug therapy
6.
J Med Chem ; 65(7): 5675-5689, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35332774

ABSTRACT

Stereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity. Tumor shrinkage in mouse models that are intrinsically resistant to single-agent therapy was further enhanced when treating the animals with MK-1454 in combination with a fully murinized antimouse PD-1 antibody, mDX400. These data support the development of STING agonists in combination with pembrolizumab (humanized anti-PD-1 antibody) for patients with tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 therapy.


Subject(s)
Membrane Proteins , Neoplasms , Animals , Cytokines , Humans , Immunotherapy/methods , Interferons , Mice , Neoplasms/drug therapy
7.
Mol Cancer Ther ; 21(2): 282-293, 2022 02.
Article in English | MEDLINE | ID: mdl-34815361

ABSTRACT

The innate immune agonist STING (STimulator of INterferon Genes) binds its natural ligand 2'3'-cGAMP (cyclic guanosine-adenosine monophosphate) and initiates type I IFN production. This promotes systemic antigen-specific CD8+ T-cell priming that eventually provides potent antitumor activity. To exploit this mechanism, we synthesized a novel STING agonist, MSA-1, that activates both mouse and human STING with higher in vitro potency than cGAMP. Following intratumoral administration of MSA-1 to a panel of syngeneic mouse tumors on immune-competent mice, cytokine upregulation and its exposure were detected in plasma, other tissues, injected tumors, and noninjected tumors. This was accompanied by effective antitumor activity. Mechanistic studies in immune-deficient mice suggested that antitumor activity of intratumorally dosed STING agonists is in part due to necrosis and/or innate immune responses such as TNF-α activity, but development of a robust adaptive antitumor immunity is necessary for complete tumor elimination. Combination with PD-1 blockade in anti-PD-1-resistant murine models showed that MSA-1 may synergize with checkpoint inhibitors but can also provide superior tumor control as a single agent. We show for the first time that potent cyclic dinucleotides can promote a rapid and stronger induction of the same genes eventually regulated by PD-1 blockade. This may have contributed to the relatively early tumor control observed with MSA-1. Taken together, these data strongly support the development of STING agonists as therapy for patients with aggressive tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 treatment by enhancing the anti-PD-1 immune profile.


Subject(s)
Immunity, Innate/immunology , Immunotherapy/methods , Interferons/metabolism , Neoplasms/immunology , Animals , Cell Line, Tumor , Female , Humans , Mice
8.
Bioorg Med Chem Lett ; 21(8): 2359-64, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21420857

ABSTRACT

A novel series of decahydroquinoline CB2 agonists is described. Optimization of the amide substituent led to improvements in CB2/CB1 selectivity as well as physical properties. Two key compounds were examined in the rat CFA model of acute inflammatory pain. A moderately selective CB2 agonist was active in this model. A CB2 agonist lacking functional CB1 activity was inactive in this model despite high in vivo exposure both peripherally and centrally.


Subject(s)
Amides/chemistry , Analgesics/chemistry , Quinolines/chemistry , Receptor, Cannabinoid, CB2/agonists , Amides/chemical synthesis , Amides/therapeutic use , Analgesics/chemical synthesis , Analgesics/therapeutic use , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Pain/drug therapy , Rats , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 21(8): 2354-8, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21420860

ABSTRACT

A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects.


Subject(s)
Analgesics/chemistry , Pyridines/chemistry , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Analgesics/chemical synthesis , Analgesics/therapeutic use , Animals , Disease Models, Animal , Freund's Adjuvant/pharmacology , Humans , Hyperalgesia/drug therapy , Pyridines/chemical synthesis , Pyridines/therapeutic use , Rats , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
10.
ACS Med Chem Lett ; 12(1): 99-106, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33488970

ABSTRACT

By employing a phenotypic screen, a set of compounds, exemplified by 1, were identified which potentiate the ability of histone deacetylase inhibitor vorinostat to reverse HIV latency. Proteome enrichment followed by quantitative mass spectrometric analysis employing a modified analogue of 1 as affinity bait identified farnesyl transferase (FTase) as the primary interacting protein in cell lysates. This ligand-FTase binding interaction was confirmed via X-ray crystallography and temperature dependent fluorescence studies, despite 1 lacking structural and binding similarity to known FTase inhibitors. Although multiple lines of evidence established the binding interaction, these ligands exhibited minimal inhibitory activity in a cell-free biochemical FTase inhibition assay. Subsequent modification of the biochemical assay by increasing anion concentration demonstrated FTase inhibitory activity in this novel class. We propose 1 binds together with the anion in the active site to inhibit farnesyl transferase. Implications for phenotypic screening deconvolution and HIV reactivation are discussed.

11.
J Med Chem ; 64(21): 16213-16241, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34714078

ABSTRACT

Identification of low-dose, low-molecular-weight, drug-like inhibitors of protein-protein interactions (PPIs) is a challenging area of research. Despite the challenges, the therapeutic potential of PPI inhibition has driven significant efforts toward this goal. Adding to recent success in this area, we describe herein our efforts to optimize a novel purine carboxylic acid-derived inhibitor of the HDM2-p53 PPI into a series of low-projected dose inhibitors with overall favorable pharmacokinetic and physical properties. Ultimately, a strategy focused on leveraging known binding hot spots coupled with biostructural information to guide the design of conformationally constrained analogs and a focus on efficiency metrics led to the discovery of MK-4688 (compound 56), a highly potent, selective, and low-molecular-weight inhibitor suitable for clinical investigation.


Subject(s)
Imidazoles/chemistry , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyridines/chemistry , Tumor Suppressor Protein p53/antagonists & inhibitors , Humans , Protein Binding , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
12.
Cell Chem Biol ; 28(2): 134-147.e14, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33086052

ABSTRACT

Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors. Further optimization resulted in KB-0742, an orally bioavailable, selective CDK9 inhibitor with potent anti-tumor activity in CRPC models. In 22Rv1 cells, KB-0742 rapidly downregulates nascent transcription, preferentially depleting short half-life transcripts and AR-driven oncogenic programs. In vivo, oral administration of KB-0742 significantly reduced tumor growth in CRPC, supporting CDK9 inhibition as a promising therapeutic strategy to target AR dependence in CRPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Kinase Inhibitors/pharmacology , Receptors, Androgen/genetics , Transcription, Genetic/drug effects , Androgen Receptor Antagonists/therapeutic use , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/genetics , Gene Expression Regulation, Neoplastic/drug effects , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Kinase Inhibitors/therapeutic use
13.
Bioorg Med Chem Lett ; 20(15): 4704-8, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20615693

ABSTRACT

A new structural class of potent antagonists of the Neuropeptide S Receptor (NPSR) is reported. High-throughput screening identified a tricyclic imidazole antagonist of NPSR, and medicinal chemistry optimization of this structure was undertaken to improve potency against the receptor as well as CNS penetration. Detailed herein are synthetic and medicinal chemistry studies that led to the identification of antagonists 15 and NPSR-PI1, which demonstrate potent in vitro NPSR antagonism and central exposure in vivo.


Subject(s)
Heterocyclic Compounds, 3-Ring/chemistry , Imidazoles/chemistry , Receptors, Neuropeptide/antagonists & inhibitors , Animals , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacology , High-Throughput Screening Assays , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Rats , Receptors, Neuropeptide/metabolism , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 20(15): 4700-3, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20510609

ABSTRACT

Administration of Neuropeptide S (NPS) has been shown to produce arousal, that is, independent of novelty and to induce wakefulness by suppressing all stages of sleep, as demonstrated by EEG recordings in rat. Medicinal chemistry efforts have identified a quinolinone class of potent NPSR antagonists that readily cross the blood-brain barrier. We detail here optimization efforts resulting in the identification of a potent NPSR antagonist which dose-dependently and specifically inhibited (125)I-NPS binding in the CNS when administered to rats.


Subject(s)
Receptors, Neuropeptide/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Blood-Brain Barrier/metabolism , Central Nervous System/metabolism , Humans , Iodine Radioisotopes/chemistry , Protein Binding , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/pharmacology , Rats , Receptors, Neuropeptide/metabolism , Structure-Activity Relationship
15.
ACS Med Chem Lett ; 11(12): 2461-2469, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335668

ABSTRACT

The 3,3-disubstituted oxindole moiety is a versatile and rigid three-dimensionally shaped scaffold. When engineered with a purine hinge-binding core, exceptionally selective PI3Kδ kinase inhibitors were discovered by exploiting small differences in isoform selectivity pockets. Crystal structures of early lead 2f bound to PI3Kδ and PI3Kα helped rationalize the high selectivity observed with 2f. By attenuating the lypophilicity and metabolic liabilities of an oxindole moiety, we improved the preclinical species PK and solubility and reduced adenosine uptake activity. The excellent potency and kinome selectivity of 7-azaoxindole 4d and spirooxindole 5d, together with a low plasma clearance and good half-life in rat and dog, supported a low once-daily predicted human dose.

16.
ACS Med Chem Lett ; 11(2): 114-119, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32071676

ABSTRACT

The clinical success of anti-IL-17 monoclonal antibodies (i.e., Cosentyx and Taltz) has validated Th17 pathway modulation for the treatment of autoimmune diseases. The nuclear hormone receptor RORγt is a master regulator of Th17 cells and affects the production of a host of cytokines, including IL-17A, IL-17F, IL-22, IL-26, and GM-CSF. Substantial interest has been spurred across both academia and industry to seek small molecules suitable for RORγt inhibition. A variety of RORγt inhibitors have been reported in the past few years, the majority of which are orthosteric binders. Here we disclose the discovery and optimization of a class of inhibitors, which bind differently to an allosteric binding pocket. Starting from a weakly active hit 1, a tool compound 14 was quickly identified that demonstrated superior potency, selectivity, and off-target profile. Further optimization focused on improving metabolic stability. Replacing the benzoic acid moiety with piperidinyl carboxylate, modifying the 4-aza-indazole core in 14 to 4-F-indazole, and incorporating a key hydroxyl group led to the discovery of 25, which possesses exquisite potency and selectivity, as well as an improved pharmacokinetic profile suitable for oral dosing.

17.
Science ; 369(6506)2020 08 21.
Article in English | MEDLINE | ID: mdl-32820094

ABSTRACT

Pharmacological activation of the STING (stimulator of interferon genes)-controlled innate immune pathway is a promising therapeutic strategy for cancer. Here we report the identification of MSA-2, an orally available non-nucleotide human STING agonist. In syngeneic mouse tumor models, subcutaneous and oral MSA-2 regimens were well tolerated and stimulated interferon-ß secretion in tumors, induced tumor regression with durable antitumor immunity, and synergized with anti-PD-1 therapy. Experimental and theoretical analyses showed that MSA-2 exists as interconverting monomers and dimers in solution, but only dimers bind and activate STING. This model was validated by using synthetic covalent MSA-2 dimers, which were potent agonists. Cellular potency of MSA-2 increased upon extracellular acidification, which mimics the tumor microenvironment. These properties appear to underpin the favorable activity and tolerability profiles of effective systemic administration of MSA-2.


Subject(s)
Antineoplastic Agents/pharmacology , Membrane Proteins/metabolism , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Humans
18.
J Med Chem ; 49(24): 6954-7, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125248

ABSTRACT

Novel 3-cyanoisoquinoline Kv1.5 antagonists have been prepared and evaluated in in vitro and in vivo assays for inhibition of the Kv1.5 potassium channel and its associated cardiac potassium current, IKur. Structural modifications of isoquinolinone lead 1 afforded compounds with excellent potency, selectivity, and oral bioavailability.


Subject(s)
Anti-Arrhythmia Agents/chemical synthesis , Atrial Fibrillation/drug therapy , Isoquinolines/chemical synthesis , Kv1.5 Potassium Channel/antagonists & inhibitors , Nitriles/chemical synthesis , Administration, Oral , Animals , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacology , Biological Availability , Electrophysiology , Heart/drug effects , Heart/physiology , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Kv1.5 Potassium Channel/physiology , Nitriles/chemistry , Nitriles/pharmacology , Patch-Clamp Techniques , Rats , Stereoisomerism , Structure-Activity Relationship
19.
Nat Commun ; 6: 8833, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26640126

ABSTRACT

RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.


Subject(s)
Interleukin-17/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Allosteric Site , Animals , Cell Differentiation , Humans , Interleukin-17/chemistry , Ligands , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Protein Structure, Tertiary , Th17 Cells/chemistry , Th17 Cells/metabolism
20.
Angew Chem Int Ed Engl ; 37(19): 2700-2704, 1998 Oct 16.
Article in English | MEDLINE | ID: mdl-29711601

ABSTRACT

Controlling the elements of planar and axial chirality are the principal challenges in the synthesis of the aglycon of vancomycin. Vancomycin is the prototypical member of the glycopeptide family of antibiotics which are effective for the treatment of infections by methicillin-resistant Staphylococcus aureus. The first total syntheses of the vancomycin and eremomycin aglycons provide insight into the influence of structure on kinetic and thermodynamic control of atropselective macrocyclizations.

SELECTION OF CITATIONS
SEARCH DETAIL