Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271585

ABSTRACT

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Subject(s)
Carbon , Rainforest , Carbon/metabolism , Ecosystem , Droughts , Water/metabolism , Trees/metabolism , Carbohydrates , Plant Leaves/metabolism
2.
Glob Chang Biol ; 30(5): e17320, 2024 May.
Article in English | MEDLINE | ID: mdl-38751310

ABSTRACT

One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change effects on soils. Reducing these uncertainties requires simultaneous investigation of factors controlling the amount (SOC abundance) and duration (SOC persistence) of stored C. We present a global synthesis of SOC and radiocarbon profiles (nProfile = 597) to assess the timescales of SOC storage. We use a combination of statistical and depth-resolved compartment models to explore key factors controlling the relationships between SOC abundance and persistence across pedo-climatic regions and with soil depth. This allows us to better understand (i) how SOC abundance and persistence covary across pedo-climatic regions and (ii) how the depth dependence of SOC dynamics relates to climatic and mineralogical controls on SOC abundance and persistence. We show that SOC abundance and persistence are differently related; the controls on these relationships differ substantially between major pedo-climatic regions and soil depth. For example, large amounts of persistent SOC can reflect climatic constraints on soils (e.g., in tundra/polar regions) or mineral absorption, reflected in slower decomposition and vertical transport rates. In contrast, lower SOC abundance can be found with lower SOC persistence (e.g., in highly weathered tropical soils) or higher SOC persistence (e.g., in drier and less productive regions). We relate variable patterns of SOC abundance and persistence to differences in the processes constraining plant C input, microbial decomposition, vertical C transport and mineral SOC stabilization potential. This process-oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo-climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence.


Subject(s)
Carbon , Climate Change , Soil , Soil/chemistry , Carbon/analysis , Carbon Cycle , Models, Theoretical , Climate
3.
Glob Chang Biol ; 30(1): e17089, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273490

ABSTRACT

Given the importance of soil for the global carbon cycle, it is essential to understand not only how much carbon soil stores but also how long this carbon persists. Previous studies have shown that the amount and age of soil carbon are strongly affected by the interaction of climate, vegetation, and mineralogy. However, these findings are primarily based on studies from temperate regions and from fine-scale studies, leaving large knowledge gaps for soils from understudied regions such as sub-Saharan Africa. In addition, there is a lack of data to validate modeled soil C dynamics at broad scales. Here, we present insights into organic carbon cycling, based on a new broad-scale radiocarbon and mineral dataset for sub-Saharan Africa. We found that in moderately weathered soils in seasonal climate zones with poorly crystalline and reactive clay minerals, organic carbon persists longer on average (topsoil: 201 ± 130 years; subsoil: 645 ± 385 years) than in highly weathered soils in humid regions (topsoil: 140 ± 46 years; subsoil: 454 ± 247 years) with less reactive minerals. Soils in arid climate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years) store organic carbon for periods more similar to those in seasonal climate zones, likely reflecting climatic constraints on weathering, carbon inputs and microbial decomposition. These insights into the timescales of organic carbon persistence in soils of sub-Saharan Africa suggest that a process-oriented grouping of soils based on pedo-climatic conditions may be useful to improve predictions of soil responses to climate change at broader scales.


Subject(s)
Carbon , Soil , Soil/chemistry , Minerals , Carbon Sequestration , Africa South of the Sahara
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389667

ABSTRACT

Climate change is expected to pose a global threat to forest health by intensifying extreme events like drought and insect attacks. Carbon allocation is a fundamental process that determines the adaptive responses of long-lived late-maturing organisms like trees to such stresses. However, our mechanistic understanding of how trees coordinate and set allocation priorities among different sinks (e.g., growth and storage) under severe source limitation remains limited. Using flux measurements, isotopic tracing, targeted metabolomics, and transcriptomics, we investigated how limitation of source supply influences sink activity, particularly growth and carbon storage, and their relative regulation in Norway spruce (Picea abies) clones. During photosynthetic deprivation, absolute rates of respiration, growth, and allocation to storage all decline. When trees approach neutral carbon balance, i.e., daytime net carbon gain equals nighttime carbon loss, genes encoding major enzymes of metabolic pathways remain relatively unaffected. However, under negative carbon balance, photosynthesis and growth are down-regulated while sucrose and starch biosynthesis pathways are up-regulated, indicating that trees prioritize carbon allocation to storage over growth. Moreover, trees under negative carbon balance actively increase the turnover rate of starch, lipids, and amino acids, most likely to support respiration and mitigate stress. Our study provides molecular evidence that trees faced with severe photosynthetic limitation strategically regulate storage allocation and consumption at the expense of growth. Understanding such allocation strategies is crucial for predicting how trees may respond to extreme events involving steep declines in photosynthesis, like severe drought, or defoliation by heat waves, late frost, or insect attack.


Subject(s)
Carbon/metabolism , Picea/growth & development , Picea/metabolism , Stress, Physiological , Photosynthesis/physiology , Plant Physiological Phenomena , Plant Transpiration
5.
Glob Chang Biol ; 29(9): 2591-2607, 2023 05.
Article in English | MEDLINE | ID: mdl-36847151

ABSTRACT

Soil organic carbon (SOC) dynamics depend on soil properties derived from the geoclimatic conditions under which soils develop and are in many cases modified by land conversion. However, SOC stabilization and the responses of SOC to land use change are not well constrained in deeply weathered tropical soils, which are dominated by less reactive minerals than those in temperate regions. Along a gradient of geochemically distinct soil parent materials, we investigated differences in SOC stocks and SOC (Δ14 C) turnover time across soil profile depth between montane tropical forest and cropland situated on flat, non-erosive plateau landforms. We show that SOC stocks and soil Δ14 C patterns do not differ significantly with land use, but that differences in SOC can be explained by the physicochemical properties of soils. More specifically, labile organo-mineral associations in combination with exchangeable base cations were identified as the dominating controls over soil C stocks and turnover. We argue that due to their long weathering history, the investigated tropical soils do not provide enough reactive minerals for the stabilization of C input in either high input (tropical forest) or low-input (cropland) systems. Since these soils exceeded their maximum potential for the mineral related stabilization of SOC, potential positive effects of reforestation on tropical SOC storage are most likely limited to minor differences in topsoil without major impacts on subsoil C stocks. Hence, in deeply weathered soils, increasing C inputs may lead to the accumulation of a larger readily available SOC pool, but does not contribute to long-term SOC stabilization.


Subject(s)
Carbon Sequestration , Carbon , Soil , Forests , Soil/chemistry , Weather
6.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220209, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37807682

ABSTRACT

The Anthropocene is defined by marked acceleration in human-induced perturbations to the Earth system. Anthropogenic emissions of CO2 and other greenhouse gases to the atmosphere and attendant changes to the global carbon cycle are among the most profound and pervasive of these perturbations. Determining the magnitude, nature and pace of these carbon cycle changes is crucial for understanding the future climate that ecosystems and humanity will experience and need to respond to. This special issue illustrates the value of radiocarbon as a tool to shed important light on the nature, magnitude and pace of carbon cycle change. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

7.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20230139, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37807690

ABSTRACT

Organic carbon (OC) association with soil minerals stabilizes OC on timescales reflecting the strength of mineral-C interactions. We applied ramped thermal oxidation to subsoil B horizons with different mineral-C associations to separate OC according to increasing temperature of oxidation, i.e. thermal activation energy. Generally, OC released at lower temperatures was richer in bioavailable forms like polysaccharides, while OC released at higher temperatures was more aromatic. Organic carbon associated with pedogenic oxides was released at lower temperatures and had a narrow range of 14C content. By contrast, N-rich compounds were released at higher temperatures from samples with 2 : 1 clays and short-range ordered (SRO) amorphous minerals. Temperatures of release overlapped for SRO minerals and crystalline oxides, although the mean age of OC released was older for the SRO. In soils with more mixed mineralogy, the added presence of older OC released at temperatures greater than 450°C from clays resulted in a broader distribution of OC ages within the sample, especially for soils rich in 2 : 1 layer expandable clays such as smectite. While pedogenic setting affects mineral stability and absolute OC age, mineralogy controls the structure of OC age distribution within a sample, which may provide insight into model structures and OC dynamics under changing conditions. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

8.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20230081, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37807687

ABSTRACT

Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced 14C in atmospheric, land and ocean carbon reservoirs. First, 14C-free carbon derived from fossil fuel burning has diluted 14C, at rates that have accelerated with time. Second, 'bomb' 14C produced by atmospheric nuclear weapon tests in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of air-sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other key C cycle processes. As we write, the 14C/12C ratio of atmospheric CO2 is dropping below pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel use and net exchange of bomb 14C between the atmosphere, ocean and land. This milestone coincides with a rapid increase in 14C measurement capacity worldwide. Leveraging future 14C measurements to understand processes and test models requires coordinated international effort-a 'decade of radiocarbon' with multiple goals: (i) filling observational gaps using archives, (ii) building and sustaining observation networks to increase measurement density across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv) establishing metrics for identifying and verifying changes in carbon sources and sinks. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

9.
New Phytol ; 230(1): 139-154, 2021 04.
Article in English | MEDLINE | ID: mdl-33507548

ABSTRACT

Non-structural carbon (NSC) storage (i.e. starch, soluble sugras and lipids) in tree stems play important roles in metabolism and growth. Their spatial distribution in wood may explain species-specific differences in carbon storage dynamics, growth and survival. However, quantitative information on the spatial distribution of starch and lipids in wood is sparse due to methodological limitations. Here we assessed differences in wood NSC and lipid storage between tropical tree species with different growth and mortality rates and contrasting functional types. We measured starch and soluble sugars in wood cores up to 4 cm deep into the stem using standard chemical quantification methods and histological slices stained with Lugol's iodine. We also detected neutral lipids using histological slices stained with Oil-Red-O. The histological method allowed us to group individuals into two categories according to their starch storage strategy: fiber-storing trees and parenchyma-storing trees. The first group had a bigger starch pool, slower growth and lower mortality rates than the second group. Lipid storage was found in wood parenchyma in five species and was related to low mortality rates. The quantification of the spatial distribution of starch and lipids in wood improves our understanding of NSC dynamics in trees and reveals additional dimensions of tree growth and survival strategies.


Subject(s)
Starch , Trees , Carbohydrates , Carbon , Wood
10.
Plant Cell Environ ; 44(8): 2522-2535, 2021 08.
Article in English | MEDLINE | ID: mdl-34096615

ABSTRACT

Little is known about the sources and age of C respired by tree roots. Previous research in stems identified two functional pools of non-structural carbohydrates (NSC): an "active" pool supplied directly from canopy photo-assimilates supporting metabolism and a "stored" pool used when fresh C supplies are limited. We compared the C isotope composition of water-soluble NSC and respired CO2 for aspen roots (Populus tremula hybrids) cut off from fresh C supply after stem-girdling or prolonged incubation of excised roots. We used bomb radiocarbon to estimate the time elapsed since C fixation for respired CO2 , water-soluble NSC and structural α-cellulose. While freshly excised roots (mostly <2.9 mm in diameter) respired CO2 fixed <1 year previously, the age increased to 1.6-2.9 year within a week after root excision. Freshly excised roots from trees girdled ~3 months ago had respiration rates and NSC stocks similar to un-girdled trees but respired older C (~1.2 year). We estimate that over 3 months NSC in girdled roots must be replaced 5-7 times by reserves remobilized from root-external sources. Using a mixing model and observed correlations between Δ14 C of water-soluble C and α-cellulose, we estimate ~30% of C is "active" (~5 mg C g-1 ).


Subject(s)
Carbon/metabolism , Plant Roots/metabolism , Populus/metabolism , Trees/metabolism , Carbohydrate Metabolism , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Carbon Radioisotopes/analysis , Cellulose/metabolism , Forests , Germany
11.
New Phytol ; 226(5): 1299-1311, 2020 06.
Article in English | MEDLINE | ID: mdl-31997347

ABSTRACT

●In trees, the use of nonstructural carbon (NSC) under limiting conditions impacts the age structure of the NSC pools. We compared model predictions of NSC ages and transit times for Pinus halepensis, Acer rubrum and Pinus taeda, to understand differences in carbon (C) storage dynamics in species with different leaf phenology and growth environments. ●We used two C allocation models from the literature to estimate the NSC age and transit time distributions, to simulate C limitation, and to evaluate the sensitivity of the mean ages to changes in allocation fluxes. ●Differences in allocation resulted in different NSC age and transit time distributions. The simulated starvation flattened the NSC age distribution and increased the mean NSC transit time, which can be used to estimate the age of the NSC available and the time it would take to exhaust the reserves. Mean NSC ages and transit times were sensitive to C fluxes in roots and allocation of C from wood storage. ●Our results demonstrate how trees with different storage traits are expected to react differently to starvation. They also provide a probabilistic explanation for the 'last-in, first-out' pattern of NSC mobilization from well-mixed C pools.


Subject(s)
Acer , Pinus , Carbohydrate Metabolism , Carbon , Probability , Wood
12.
New Phytol ; 227(6): 1790-1803, 2020 09.
Article in English | MEDLINE | ID: mdl-32557686

ABSTRACT

The long-lived tree species Eschweilera tenuifolia (O. Berg) Miers is characteristic of oligotrophic Amazonian black-water floodplain forests (igapó), seasonally inundated up to 10 months per year, often forming monodominant stands. We investigated E. tenuifolia' growth and mortality patterns in undisturbed (Jaú National Park - JNP) and disturbed igapós (Uatumã Sustainable Development Reserve - USDR, downstream of the Balbina hydroelectric dam). We analysed age-diameter relationships, basal area increment (BAI) through 5-cm diameter classes, growth changes and growth ratios preceding death, BAI clustering, BAI ratio, and dated the individual year of death (14 C). Growth and mortality patterns were then related to climatic or anthropogenic disturbances. Results were similar for both populations for estimated maximum ages (JNP, 466 yr; USDR, 498 yr, except for one USDR tree with an estimated age of 820 yr) and slightly different for mean diameter increment (JNP: 2.04 mm; USDR: 2.28 mm). Living trees from JNP showed altered growth post-1975 and sparse tree mortality occurred at various times, possibly induced by extreme hydroclimatic events. In contrast with the JNP, abrupt growth changes and massive mortality occurred in the USDR after the dam construction began (1983). Even more than 30 yr after dam construction, flood-pulse alteration continues to affect both growth and mortality of E. tenuifolia. Besides its vulnerability to anthropogenic disturbances, this species is also susceptible to long-lasting dry and wet periods induced by climatic events, the combination of both processes may cause its local and regional extinction.


Subject(s)
Floods , Trees , Forests
13.
Glob Chang Biol ; 26(10): 5988-6002, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32511819

ABSTRACT

Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain-fed croplands, and half the sites having additional irrigated cropland plots. Rain-fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain-fed pairs (p < .0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a δ13 C composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p < .0001). The losses occurred just 30-100 years after land-use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194-242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward-advancing wetting front by ~30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change.


Subject(s)
Ecosystem , Soil , Acceleration , Agriculture , Carbon , Carbonates
14.
Anal Chem ; 91(12): 7562-7569, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31050402

ABSTRACT

Stable isotopes are used in ecology to track and disentangle different processes and pathways. Especially for studies focused on the gas exchange of plants, sensing techniques that offer oxygen (O2) and carbon dioxide (CO2) sensitivity with isotopic discrimination are highly sought after. Addressing this challenge, fiber-enhanced Raman gas spectroscopy is introduced as a fast optical technique directly combining 13CO2 and 12CO2 as well as 18O2 and 16O2 measurements in one instrument. We demonstrate how a new type of optical hollow-core fiber, the so-called revolver fiber, is utilized for enhanced Raman gas sensing. Carbon dioxide and oxygen isotopologues were measured at concentrations expected when using 13C- and 18O-labeled gases in plant experiments. Limits of detection have been determined to be 25 ppm for CO2 and 150 ppm for O2. The combination of measurements with different integration times allows the creation of highly resolved broadband spectra. With the help of calculations based on density functional theory, the line at 1512 cm-1 occurring in the oxygen spectrum is assigned to 18O16O. The relative abundances of the isotopologues 18O16O and nitrogen 15N14N were in good agreement with typical values. For CO2, fiber-enhanced Raman spectra show the Fermi diad and hotbands of 12C16O2, 13C16O2, and 12C18O16O. Several weak lines were observed, and the line at 1426 cm-1 was identified as originating from the (0 4 0 2) → (0 2 0 2) transition of 12C16O2. With the demonstrated sensitivity and discriminatory power, fiber-enhanced Raman spectroscopy is a possible alternative means to investigate plant metabolism, directly combining 13CO2 and 12CO2 measurements with 18O2 and 16O2 measurements in one instrument. The presented method thus has large potential for basic analytical investigations as well as for applications in the environmental sciences.

15.
New Phytol ; 222(1): 144-158, 2019 04.
Article in English | MEDLINE | ID: mdl-30289558

ABSTRACT

Carbon (C) allocation plays a central role in tree responses to environmental changes. Yet, fundamental questions remain about how trees allocate C to different sinks, for example, growth vs storage and defense. In order to elucidate allocation priorities, we manipulated the whole-tree C balance by modifying atmospheric CO2 concentrations [CO2 ] to create two distinct gradients of declining C availability, and compared how C was allocated among fluxes (respiration and volatile monoterpenes) and biomass C pools (total biomass, nonstructural carbohydrates (NSC) and secondary metabolites (SM)) in well-watered Norway spruce (Picea abies) saplings. Continuous isotope labelling was used to trace the fate of newly-assimilated C. Reducing [CO2 ] to 120 ppm caused an aboveground C compensation point (i.e. net C balance was zero) and resulted in decreases in growth and respiration. By contrast, soluble sugars and SM remained relatively constant in aboveground young organs and were partially maintained with a constant allocation of newly-assimilated C, even at expense of root death from C exhaustion. We conclude that spruce trees have a conservative allocation strategy under source limitation: growth and respiration can be downregulated to maintain 'operational' concentrations of NSC while investing newly-assimilated C into future survival by producing SM.


Subject(s)
Picea/growth & development , Picea/immunology , Atmosphere/chemistry , Biomass , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Phenols/metabolism , Plant Stems/metabolism , Solubility , Starch/metabolism , Sugars/metabolism , Terpenes/metabolism , Time Factors
16.
New Phytol ; 224(2): 625-631, 2019 10.
Article in English | MEDLINE | ID: mdl-31282591

ABSTRACT

Late frost can destroy the photosynthetic apparatus of trees. We hypothesized that this can alter the normal cyclic dynamics of C-reserves in the wood. We measured soluble sugar concentrations and radiocarbon signatures (Δ14 C) of soluble nonstructural carbon (NSC) in woody tissues sampled from a Mediterranean beech forest that was completely defoliated by an exceptional late frost in 2016. We used the bomb radiocarbon approach to estimate the time elapsed since fixation of mobilized soluble sugars. During the leafless period after the frost event, soluble sugar concentrations declined sharply while Δ14 C of NSC increased. This can be explained by the lack of fresh assimilate supply and a mobilization of C from reserve pools. Soluble NSC became increasingly older during the leafless period, with a maximum average age of 5 yr from samples collected 27 d before canopy recovery. Following leaf re-growth, soluble sugar concentrations increased and Δ14 C of soluble NSC decreased, indicating the allocation of new assimilates to the stem soluble sugars pool. These data highlight that beech trees rapidly mobilize reserve C to survive strong source-sink imbalances, for example due to late frost, and show that NSC is a key trait for tree resilience under global change.


Subject(s)
Carbon/metabolism , Fagus/physiology , Freezing , Plant Leaves/physiology , Seasons , Carbohydrate Metabolism , Carbon Radioisotopes
17.
Glob Chang Biol ; 25(4): 1529-1546, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30554462

ABSTRACT

Rising atmospheric CO2 concentrations have increased interest in the potential for forest ecosystems and soils to act as carbon (C) sinks. While soil organic C contents often vary with tree species identity, little is known about if, and how, tree species influence the stability of C in soil. Using a 40 year old common garden experiment with replicated plots of eleven temperate tree species, we investigated relationships between soil organic matter (SOM) stability in mineral soils and 17 ecological factors (including tree tissue chemistry, magnitude of organic matter inputs to the soil and their turnover, microbial community descriptors, and soil physicochemical properties). We measured five SOM stability indices, including heterotrophic respiration, C in aggregate occluded particulate organic matter (POM) and mineral associated SOM, and bulk SOM δ15 N and ∆14 C. The stability of SOM varied substantially among tree species, and this variability was independent of the amount of organic C in soils. Thus, when considering forest soils as C sinks, the stability of C stocks must be considered in addition to their size. Further, our results suggest tree species regulate soil C stability via the composition of their tissues, especially roots. Stability of SOM appeared to be greater (as indicated by higher δ15 N and reduced respiration) beneath species with higher concentrations of nitrogen and lower amounts of acid insoluble compounds in their roots, while SOM stability appeared to be lower (as indicated by higher respiration and lower proportions of C in aggregate occluded POM) beneath species with higher tissue calcium contents. The proportion of C in mineral associated SOM and bulk soil ∆14 C, though, were negligibly dependent on tree species traits, likely reflecting an insensitivity of some SOM pools to decadal scale shifts in ecological factors. Strategies aiming to increase soil C stocks may thus focus on particulate C pools, which can more easily be manipulated and are most sensitive to climate change.

18.
Glob Chang Biol ; 25(9): 2855-2868, 2019 09.
Article in English | MEDLINE | ID: mdl-31237398

ABSTRACT

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.


Subject(s)
Carbon Dioxide , Fires , Brazil , Ecosystem , Forests , Trees
19.
Water Resour Res ; 55(3): 2104-2121, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31068736

ABSTRACT

Despite the global significance of the subsurface biosphere, the degree to which it depends on surface organic carbon (OC) is still poorly understood. Here, we compare stable and radiogenic carbon isotope compositions of microbial phospholipid fatty acids (PLFAs) with those of in situ potential microbial C sources to assess the major C sources for subsurface microorganisms in biogeochemical distinct shallow aquifers (Critical Zone Exploratory, Thuringia Germany). Despite the presence of younger OC, the microbes assimilated 14C-free OC to varying degrees; ~31% in groundwater within the oxic zone, ~47% in an iron reduction zone, and ~70% in a sulfate reduction/anammox zone. The persistence of trace amounts of mature and partially biodegraded hydrocarbons suggested that autochthonous petroleum-derived hydrocarbons were a potential 14C-free C source for heterotrophs in the oxic zone. In this zone, Δ14C values of dissolved inorganic carbon (-366 ± 18‰) and 11MeC16:0 (-283 ± 32‰), an important component in autotrophic nitrite oxidizers, were similar enough to indicate that autotrophy is an important additional C fixation pathway. In anoxic zones, methane as an important C source was unlikely since the 13C-fractionations between the PLFAs and CH4 were inconsistent with kinetic isotope effects associated with methanotrophy. In the sulfate reduction/anammox zone, the strong 14C-depletion of 10MeC16:0 (-942 ± 22‰), a PLFA common in sulfate reducers, indicated that those bacteria were likely to play a critical part in 14C-free sedimentary OC cycling. Results indicated that the 14C-content of microbial biomass in shallow sedimentary aquifers results from complex interactions between abundance and bioavailability of naturally occurring OC, hydrogeology, and specific microbial metabolisms.

20.
New Phytol ; 220(1): 111-120, 2018 10.
Article in English | MEDLINE | ID: mdl-30067298

ABSTRACT

Nonstructural carbon (NSC) reserves act as buffers to sustain tree activity during periods when carbon (C) assimilation does not meet C demand, but little is known about their age and accessibility; we designed a controlled girdling experiment in the Amazon to study tree survival on NSC reserves. We used bomb-radiocarbon (14 C) to monitor the time elapsed between C fixation and release ('age' of substrates). We simultaneously monitored how the mobilization of reserve C affected δ13 CO2 . Six ungirdled control trees relied almost exclusively on recent assimilates throughout the 17 months of measurement. The Δ14 C of CO2 emitted from the six girdled stems increased significantly over time after girdling, indicating substantial remobilization of storage NSC fixed up to 13-14 yr previously. This remobilization was not accompanied by a consistent change in observed δ13 CO2 . These trees have access to storage pools integrating C accumulated over more than a decade. Remobilization follows a very clear reverse chronological mobilization with younger reserve pools being mobilized first. The lack of a shift in the δ13 CO2 might indicate a constant contribution of starch hydrolysis to the soluble sugar pool even outside pronounced stress periods (regular mixing).


Subject(s)
Carbon/metabolism , Plant Stems/physiology , Trees/physiology , Atmosphere/chemistry , Brazil , Carbon Dioxide/metabolism , Carbon Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL