Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Antimicrob Agents Chemother ; 58(3): 1646-51, 2014.
Article in English | MEDLINE | ID: mdl-24379198

ABSTRACT

Identification of a novel class of anti-Burkholderia compounds is key in addressing antimicrobial resistance to current therapies as well as naturally occurring resistance. The FabI enoyl-ACP reductase in Burkholderia is an underexploited target that presents an opportunity for development of a new class of inhibitors. A library of substituted diphenyl ethers was used to identify FabI1-specific inhibitors for assessment in Burkholderia pseudomallei ex vivo and murine efficacy models. Active FabI1 inhibitors were identified in a two-stage format consisting of percent inhibition screening and MIC determination by the broth microdilution method. Each compound was evaluated against the B. pseudomallei 1026b (efflux-proficient) and Bp400 (efflux-compromised) strains. In vitro screening identified candidate substituted diphenyl ethers that exhibited MICs of less than 1 µg/ml, and enzyme kinetic assays were used to assess potency and specificity against the FabI1 enzyme. These compounds demonstrated activity in a Burkholderia ex vivo efficacy model, and two demonstrated efficacy in an acute B. pseudomallei mouse infection model. This work establishes substituted diphenyl ethers as a suitable platform for development of novel anti-Burkholderia compounds that can be used for treatment of melioidosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Burkholderia pseudomallei/drug effects , Phenyl Ethers/pharmacology , Animals , Burkholderia pseudomallei/enzymology , Disease Models, Animal , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Female , Melioidosis/drug therapy , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Vero Cells/drug effects
2.
Appl Environ Microbiol ; 75(20): 6496-503, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19700544

ABSTRACT

Burkholderia pseudomallei is the etiologic agent of melioidosis, a rare but serious tropical disease. In the United States, genetic research with this select agent bacterium is strictly regulated. Although several select agent compliant methods have been developed for allelic replacement, all of them suffer from some drawbacks, such as a need for specific host backgrounds or use of minimal media. Here we describe a versatile select agent compliant allele replacement system for B. pseudomallei based on a mobilizable vector, pEXKm5, which contains (i) a multiple cloning site within a lacZalpha gene for facile cloning of recombinant DNA fragments, (ii) a constitutively expressed gusA indicator gene for visual detection of merodiploid formation and resolution, and (iii) elements required for resolution of merodiploids using either I-SceI homing endonuclease-stimulated recombination or sacB-based counterselection. The homing endonuclease-based allele replacement system is completed by pBADSce, which contains an araC-P(BAD)-I-sceI expression cassette for arabinose-inducible I-SceI expression and a temperature-sensitive pRO1600 replicon for facile plasmid curing. Complementing these systems is the improved Deltaasd Escherichia coli mobilizer strain RHO3. This strain is susceptible to commonly used antibiotics and allows nutritional counterselection on rich media because of its diaminopimelic acid auxotrophy. The versatility of the I-SceI- and sacB-based methods afforded by pEXKm5 in conjunction with E. coli RHO3 was demonstrated by isolation of diverse deletion mutants in several clinical, environmental, and laboratory B. pseudomallei strains. Finally, sacB-based counterselection was employed to isolate a defined chromosomal fabD(Ts) allele that causes synthesis of a temperature-sensitive FabD, an essential fatty acid biosynthesis enzyme.


Subject(s)
Burkholderia pseudomallei/genetics , Alleles , Base Sequence , Burkholderia pseudomallei/pathogenicity , DNA Primers/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Genes, Bacterial , Genetic Techniques , Humans , Melioidosis/microbiology , Molecular Sequence Data , Mutation , Plasmids/genetics
3.
Appl Environ Microbiol ; 74(24): 7529-35, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18952878

ABSTRACT

Burkholderia psedudomallei is the etiologic agent of melioidosis, and the bacterium is listed as a potential agent of bioterrorism because of its low infectious dose, multiple infectious routes, and intrinsic antibiotic resistance. To further accelerate research with this understudied bacterium, we developed a Himar1-based random mutagenesis system for B. pseudomallei (HimarBP). The transposons contain a Flp recombinase-excisable, approved kanamycin resistance selection marker and an R6K origin of replication for transposon rescue. In vivo mutagenesis of virulent B. pseudomallei strain 1026b was highly efficient, with up to 44% of cells transformed with the delivery plasmid harboring chromosomal HimarBP insertions. Southern analyses revealed single insertions with no evidence of delivery plasmid maintenance. Sequence analysis of rescued HimarBP insertions revealed random insertions on both chromosomes within open reading frames and intergenic regions and that the orientation of insertions was largely unbiased. Auxotrophic mutants were obtained at a frequency of 0.72%, and nutritional supplementation experiments supported the functional assignment of genes within the respective biosynthetic pathways. HimarBP insertions were stable in the absence of selection and could be readily transferred between naturally transformable strains. Experiments with B. thailandensis suggest that the newly developed HimarBP transposons can also be used for random mutagenesis of other Burkholderia spp., especially the closely related species B. mallei. Our results demonstrate that comprehensive transposon libraries of B. pseudomallei can be generated, providing additional tools for the study of the biology, pathogenesis, and antibiotic resistance of this pathogen.


Subject(s)
Burkholderia pseudomallei/genetics , DNA Transposable Elements , Mutagenesis, Insertional/methods , Blotting, Southern , Chromosomes, Bacterial , DNA, Bacterial/genetics , Kanamycin Resistance , Molecular Sequence Data , Plasmids , Recombination, Genetic , Sequence Analysis, DNA
4.
Appl Environ Microbiol ; 74(18): 5784-91, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18641163

ABSTRACT

Although Pseudomonas aeruginosa is an opportunistic pathogen that does not often naturally infect alternate hosts, such as plants, the plant-P. aeruginosa model has become a widely recognized system for identifying new virulence determinants and studying the pathogenesis of the organism. Here, we examine how both host factors and P. aeruginosa PAO1 gene expression are affected in planta after infiltration into incompatible and compatible cultivars of tobacco (Nicotiana tabacum L.). N. tabacum has a resistance gene (N) against tobacco mosaic virus, and although resistance to PAO1 infection is correlated with the presence of a dominant N gene, our data suggest that it is not a factor in resistance against PAO1. We did observe that the resistant tobacco cultivar had higher basal levels of salicylic acid and a stronger salicylic acid response upon infiltration of PAO1. Salicylic acid acts as a signal to activate defense responses in plants, limiting the spread of the pathogen and preventing access to nutrients. It has also been shown to have direct virulence-modulating effects on P. aeruginosa. We also examined host effects on the pathogen by analyzing global gene expression profiles of bacteria removed from the intracellular fluid of the two plant hosts. We discovered that the availability of micronutrients, particularly sulfate and phosphates, is important for in planta pathogenesis and that the amounts of these nutrients made available to the bacteria may in turn have an effect on virulence gene expression. Indeed, there are several reports suggesting that P. aeruginosa virulence is influenced in mammalian hosts by the availability of micronutrients, such as iron and nitrogen, and by levels of O(2).


Subject(s)
Gene Expression Profiling , Micronutrients/metabolism , Nicotiana/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Host-Pathogen Interactions , Immunity, Innate , Oligonucleotide Array Sequence Analysis , Opportunistic Infections/microbiology , Phosphates/metabolism , Plant Diseases/microbiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/genetics , Reverse Transcriptase Polymerase Chain Reaction , Salicylic Acid/immunology , Sulfates/metabolism , Nicotiana/immunology , Virulence
5.
PLoS One ; 8(11): e80368, 2013.
Article in English | MEDLINE | ID: mdl-24260378

ABSTRACT

Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+) T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+) T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.


Subject(s)
Burkholderia pseudomallei/immunology , Goats/immunology , Goats/metabolism , Lipids/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Female , Glycolipids/immunology , Glycolipids/metabolism , HLA-DR alpha-Chains/immunology , HLA-DR alpha-Chains/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Melioidosis/immunology , Melioidosis/metabolism , Ornithine/analogs & derivatives , Ornithine/immunology , Ornithine/metabolism , Phospholipids/immunology , Phospholipids/metabolism , Up-Regulation/immunology
6.
J Proteomics ; 75(3): 1031-42, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22062159

ABSTRACT

Colony morphology variation of Burkholderia pseudomallei is a notable feature of a proportion of primary clinical cultures from patients with melioidosis. Here, we examined the hypothesis that colony morphology switching results in phenotypic changes associated with enhanced survival under adverse conditions. We generated isogenic colony morphology types II and III from B. pseudomallei strain 153 type I, and compared their protein expression profiles using 2D gel electrophoresis. Numerous proteins were differentially expressed, the most prominent of which were flagellin, arginine deiminase (AD) and carbamate kinase (CK), which were over-expressed in isogenic types II and III compared with parental type I. AD and CK (encoded by arcA and arcC) are components of the arginine deiminase system (ADS) which facilitates acid tolerance. Reverse transcriptase PCR of arcA and arcC mRNA expression confirmed the proteomic results. Transcripts of parental type I strain 153 arcA and arcC were increased in the presence of arginine, in a low oxygen concentration and in acid. Comparison of wild type with arcA and arcC defective mutants demonstrated that the B. pseudomallei ADS was associated with survival in acid, but did not appear to play a role in intracellular survival or replication within the mouse macrophage cell line J774A.1. These data provide novel insights into proteomic alterations that occur during the complex process of morphotype switching, and lend support to the idea that this is associated with a fitness advantage in vivo.


Subject(s)
Bacterial Proteins/biosynthesis , Burkholderia pseudomallei/metabolism , Gene Expression Regulation, Bacterial/physiology , Animals , Bacterial Proteins/genetics , Burkholderia pseudomallei/cytology , Burkholderia pseudomallei/genetics , Humans , Melioidosis/genetics , Melioidosis/metabolism , Mutation , Proteomics/methods , RNA, Bacterial/biosynthesis , RNA, Bacterial/genetics , Species Specificity
7.
PLoS Negl Trop Dis ; 3(9): e519, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19771149

ABSTRACT

BACKGROUND: Burkholderia pseudomallei is intrinsically resistant to aminoglycosides and macrolides, mostly due to AmrAB-OprA efflux pump expression. We investigated the molecular mechanisms of aminoglycoside susceptibility exhibited by Thai strains 708a, 2188a, and 3799a. METHODOLOGY/PRINCIPAL FINDINGS: qRT-PCR revealed absence of amrB transcripts in 708a and greatly reduced levels in 2188a and 3799a. Serial passage on increasing gentamicin concentrations yielded 2188a and 3799a mutants that became simultaneously resistant to other aminoglycosides and macrolides, whereas such mutants could not be obtained with 708a. Transcript analysis showed that the resistance of the 2188a and 3799a mutants was due to upregulation of amrAB-oprA expression by unknown mechanism(s). Use of a PCR walking strategy revealed that the amrAB-oprA operon was missing in 708a and that this loss was associated with deletion of more than 70 kb of genetic material. Rescue of the amrAB-oprB region from a 708a fosmid library and sequencing showed the presence of a large chromosome 1 deletion (131 kb and 141 kb compared to strains K96243 and 1710b, respectively). This deletion not only removed the amrAB-oprA operon, but also the entire gene clusters for malleobactin and cobalamin synthesis. Other genes deleted included the anaerobic arginine deiminase pathway, putative type 1 fimbriae and secreted chitinase. Whole genome sequencing and PCR analysis confirmed absence of these genes from 708a. Despite missing several putative virulence genes, 708a was fully virulent in a murine melioidosis model. CONCLUSIONS/SIGNIFICANCE: Strain 708a may be a natural candidate for genetic manipulation experiments that use Select Agent compliant antibiotics for selection and validates the use of laboratory-constructed Delta(amrAB-oprA) mutants in such experiments.

8.
Trans R Soc Trop Med Hyg ; 102 Suppl 1: S145-51, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19121677

ABSTRACT

Burkholderia pseudomallei is the aetiological agent of melioidosis. Therapy for this disease is lengthy and limited to only a few antibiotics because of this bacterium's intrinsic antibiotic resistance to many clinically useful antibiotics. These properties of B. pseudomallei may partially be due to expression of efflux pumps of the resistance-nodulation-cell-division (RND) family. The patterns and magnitude of RND efflux pump expression in commonly used strains and clinical isolates of B. pseudomallei from the Royal Darwin Hospital, Darwin, Australia, were assessed in cells grown to late exponential phase using quantitative real-time PCR (qRT-PCR). Expression of the three previously identified RND efflux pumps AmrAB-OprA, BpeAB-OprB and BpeEF-OprC, as well as four other yet uncharacterized pumps, was found to be widespread in the clinical isolates. In 45 of 50 isolates (90%), mRNA was detected for at least one of the seven RND pumps. Of these 45 isolates, 41 (82%) expressed multiple pumps with nine strains expressing all seven pumps tested. While these studies revealed no striking correlation between RND efflux pump expression and clinically significant antibiotic resistance, the data support the notion that RND pumps probably play important roles in this bacterium's physiology, defence against toxic compounds, and perhaps virulence.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Burkholderia pseudomallei/genetics , Drug Resistance, Multiple, Bacterial/genetics , Operon/genetics , Australia , Burkholderia pseudomallei/drug effects , Humans , Microbial Sensitivity Tests , Reverse Transcriptase Polymerase Chain Reaction , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL