Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMC Cancer ; 23(1): 488, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37254069

ABSTRACT

BACKGROUND: Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their individual cellular constituents has also created new opportunities to generate single-cell atlases for many organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue processing, cell disaggregation, and preservation can significantly bias gene expression and alter the observed cell types. To determine whether sarcomas - tumors of mesenchymal origin - are subject to the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three aggressive subtypes: osteosarcoma (OS), Ewing sarcoma (ES), desmoplastic small round cell tumor (DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from more widely available archival frozen specimens could accurately be identified by gene expression signatures linked to tissue phenotype or pathognomonic fusion proteins. RESULTS: We systematically assessed dissociation methods across different sarcoma subtypes. We compared gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei from ES, DSRCT, and OS PDXs. We detected warm dissociation artifacts in single-cell samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were observed regardless of the dissociation method. In addition, we showed that dissociation method biases could be computationally corrected. CONCLUSIONS: We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by the dissociation method for various sarcoma subtypes. This work is the first to characterize how the dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in sarcoma PDXs.


Subject(s)
Sarcoma, Ewing , Sarcoma , Soft Tissue Neoplasms , Humans , Transcriptome , Sarcoma/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sequence Analysis, RNA/methods , RNA-Seq/methods
2.
Commun Biol ; 7(1): 411, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575753

ABSTRACT

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.


Subject(s)
Desmoplastic Small Round Cell Tumor , Phenylthiohydantoin , Child , Humans , Male , Female , Animals , Mice , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/metabolism , Receptors, Androgen/genetics , Benzamides/pharmacology , Nitriles
3.
Clin Cancer Res ; 30(15): 3259-3272, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38775859

ABSTRACT

PURPOSE: The genetic intratumoral heterogeneity observed in human osteosarcomas poses challenges for drug development and the study of cell fate, plasticity, and differentiation, which are processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN: To pinpoint errors in osteosarcoma differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs mesenchymal stem cells toward adipogenic and osteoblastic fates. Incorporating preexisting chondrocyte data, we applied trajectory analysis and non-negative matrix factorization to generate the first human mesenchymal differentiation atlas. RESULTS: This "roadmap" served as a reference to delineate the cellular composition of morphologically complex osteosarcoma tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-sequencing osteosarcoma dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS: Our study quantifies osteosarcoma differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.


Subject(s)
Bone Neoplasms , Cell Differentiation , Mesenchymal Stem Cells , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/genetics , Osteosarcoma/mortality , Humans , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/mortality , Single-Cell Analysis/methods , Transcriptome , Cell Lineage/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Gene Expression Profiling
4.
Leukemia ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179671

ABSTRACT

Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.

5.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745374

ABSTRACT

The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation bottlenecks that might someday be targeted therapeutically.

6.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986851

ABSTRACT

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.

7.
J Bone Oncol ; 33: 100419, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35251924

ABSTRACT

Primary bone cancers (PBC) belong to the family of mesenchymal tumors classified based on their cellular origin, extracellular matrix, genetic regulation, and epigenetic modification. The three major PBC types, Ewing sarcoma, osteosarcoma, and chondrosarcoma, are frequently aggressive tumors, highly metastatic, and typically occur in children and young adults. Despite their distinct origins and pathogenesis, these sarcoma subtypes rely upon common signaling pathways to promote tumor progression, metastasis, and survival. The IGF/PI3K/mTOR and AXL/YAP/TAZ pathways, in particular, have gained significant attention recently given their ties to oncogenesis, cell fate and differentiation, metastasis, and drug resistance. Naturally, these pathways - and their protein constituents - have caught the eye of the pharmaceutical industry, and a wide array of small molecule inhibitors and antibody drug-conjugates have emerged. Here, we review how the IGF/PI3K/mTOR and AXL/YAP/TAZ pathways promote PBC and highlight the drug candidates under clinical trial investigation.

8.
NPJ Precis Oncol ; 6(1): 21, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379887

ABSTRACT

Desmoplastic small round cell tumor (DSRCT) is a highly aggressive soft tissue sarcoma that is characterized by the EWSR1-WT1 fusion protein. Patients present with hundreds of tumor implants in their abdominal cavity at various sites. To determine the genetic relatedness among these sites, exome and RNA sequencing were performed on 22 DSRCT specimens from 14 patients, four of whom had specimens from various tissue sites. Multi-site tumors from individual DSRCT patients had a shared origin and were highly related. Other than the EWSR1-WT1 fusion, very few secondary cancer gene mutations were shared among the sites. Among these, ARID1A, was recurrently mutated, which corroborates findings by others in DSRCT patients. Knocking out ARID1A in JN-DSRCT cells using CRISPR/CAS9 resulted in significantly lower cell proliferation and increased drug sensitivity. The transcriptome data were integrated using network analysis and drug target database information to identify potential therapeutic opportunities in EWSR1-WT1-associated pathways, such as PI3K and mTOR pathways. Treatment of JN-DSRCT cells with the PI3K inhibitor alpelisib and mTOR inhibitor temsirolimus reduced cell proliferation. In addition, the low mutation burden was associated with an immune-cold state in DSRCT. Together, these data reveal multiple genomic and immune features of DSRCT and suggest therapeutic opportunities in patients.

9.
Oncotarget ; 13: 521-533, 2022.
Article in English | MEDLINE | ID: mdl-35284040

ABSTRACT

Osteosarcoma (OS) is a genetically diverse bone cancer that lacks a consistent targetable mutation. Recent studies suggest the IGF/PI3K/mTOR pathway and YAP/TAZ paralogs regulate cell fate and proliferation in response to biomechanical cues within the tumor microenvironment. How this occurs and their implication upon osteosarcoma survival, remains poorly understood. Here, we show that IGF-1R can translocate into the nucleus, where it may act as part of a transcription factor complex. To explore the relationship between YAP/TAZ and total and nuclear phosphorylated IGF-1R (pIGF-1R), we evaluated sequential tumor sections from a 37-patient tissue microarray by confocal microscopy. Next, we examined the relationship between stained markers, clinical disease characteristics, and patient outcomes. The nuclear to cytoplasmic ratios (N:C ratio) of YAP and TAZ strongly correlated with nuclear pIGF-1R (r = 0.522, p = 0.001 for each pair). Kaplan-Meier analyses indicated that nuclear pIGF-1R predicted poor overall survival, a finding confirmed in the Cox proportional hazards model. Though additional investigation in a larger prospective study will be required to validate the prognostic accuracy of these markers, our results may have broad implications for the new class of YAP, TAZ, AXL, or TEAD inhibitors that have reached early phase clinical trials this year.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Bone Neoplasms/metabolism , Female , Humans , Osteosarcoma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Placenta Growth Factor/metabolism , Prospective Studies , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Microenvironment
10.
Nat Commun ; 13(1): 3057, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650195

ABSTRACT

Desmoplastic small round cell tumor (DSRCT) is an aggressive, usually incurable sarcoma subtype that predominantly occurs in post-pubertal young males. Recent evidence suggests that the androgen receptor (AR) can promote tumor progression in DSRCTs. However, the mechanism of AR-induced oncogenic stimulation remains undetermined. Herein, we demonstrate that enzalutamide and AR-directed antisense oligonucleotides (AR-ASO) block 5α-dihydrotestosterone (DHT)-induced DSRCT cell proliferation and reduce xenograft tumor burden. Gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to elucidate how AR signaling regulates cellular epigenetic programs. Remarkably, ChIP-seq revealed novel DSRCT-specific AR DNA binding sites adjacent to key oncogenic regulators, including WT1 (the C-terminal partner of the pathognomonic fusion protein) and FOXF1. Additionally, AR occupied enhancer sites that regulate the Wnt pathway, neural differentiation, and embryonic organ development, implicating AR in dysfunctional cell lineage commitment. Our findings have direct clinical implications given the widespread availability of FDA-approved androgen-targeted agents used for prostate cancer.


Subject(s)
Androgen Receptor Antagonists , Desmoplastic Small Round Cell Tumor , Receptors, Androgen , Androgen Receptor Antagonists/pharmacology , Androgens , Animals , Cell Line, Tumor , Desmoplastic Small Round Cell Tumor/genetics , Humans , Male , Oligonucleotides, Antisense/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Xenograft Model Antitumor Assays
11.
Cancer Gene Ther ; 28(12): 1325-1338, 2021 12.
Article in English | MEDLINE | ID: mdl-33408328

ABSTRACT

Osteosarcoma (OS) is a molecularly heterogeneous, aggressive, poorly differentiated pediatric bone cancer that frequently spreads to the lung. Relatively little is known about phenotypic and epigenetic changes that promote lung metastases. To identify key drivers of metastasis, we studied human CCH-OS-D OS cells within a previously described rat acellular lung (ACL) model that preserves the native lung architecture, extracellular matrix, and capillary network. This system identified a subset of cells-termed derived circulating tumor cells (dCTCs)-that can migrate, intravasate, and spread within a bioreactor-perfused capillary network. Remarkably, dCTCs highly expressed epithelial-to-mesenchymal transition (EMT)-associated transcription factors (EMT-TFs), such as ZEB1, TWIST, and SOX9, which suggests that they undergo cellular reprogramming toward a less differentiated state by coopting the same epigenetic machinery used by carcinomas. Since YAP/TAZ and AXL tightly regulate the fate and plasticity of normal mesenchymal cells in response to microenvironmental cues, we explored whether these proteins contributed to OS metastatic potential using an isogenic pair of human OS cell lines that differ in AXL expression. We show that AXL inhibition significantly reduced the number of MG63.2 pulmonary metastases in murine models. Collectively, we present a laboratory-based method to detect and characterize a pure population of dCTCs, which provides a unique opportunity to study how OS cell fate and differentiation contributes to metastatic potential. Though the important step of clinical validation remains, our identification of AXL, ZEB1, and TWIST upregulation raises the tantalizing prospect that EMT-TF-directed therapies might expand the arsenal of therapies used to combat advanced-stage OS.


Subject(s)
Osteosarcoma/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , YAP-Signaling Proteins/metabolism , Animals , Cell Dedifferentiation , Disease Models, Animal , Humans , Mice , Neoplasm Metastasis , Osteosarcoma/pathology , Axl Receptor Tyrosine Kinase
12.
Cancer Res ; 79(12): 3139-3151, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30992322

ABSTRACT

Tumor-stroma interactions significantly influence cancer cell metastasis and disease progression. These interactions are partly comprised of the cross-talk between tumor and stromal fibroblasts, but the key molecular mechanisms within the cross-talk that govern cancer invasion are still unclear. Here, we adapted our previously developed microfluidic device as a 3D in vitro organotypic model to mechanistically study tumor-stroma interactions by mimicking the spatial organization of the tumor microenvironment on a chip. We cocultured breast cancer and patient-derived fibroblast cells in 3D tumor and stroma regions, respectively, and combined functional assessments, including cancer cell migration, with transcriptome profiling to unveil the molecular influence of tumor-stroma cross-talk on invasion. This led to the observation that cancer-associated fibroblasts (CAF) enhanced invasion in 3D by inducing expression of a novel gene of interest, glycoprotein nonmetastatic B (GPNMB), in breast cancer cells, resulting in increased migration speed. Importantly, knockdown of GPNMB blunted the influence of CAF on enhanced cancer invasion. Overall, these results demonstrate the ability of our model to recapitulate patient-specific tumor microenvironments to investigate the cellular and molecular consequences of tumor-stroma interactions. SIGNIFICANCE: An organotypic model of tumor-stroma interactions on a microfluidic chip reveals that CAFs promote invasion by enhancing expression of GPNMB in breast cancer cells.


Subject(s)
Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/pathology , Fibroblasts/pathology , Membrane Glycoproteins/metabolism , Microfluidic Analytical Techniques/methods , Organoids/pathology , Tumor Microenvironment , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Movement , Coculture Techniques , Female , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Membrane Glycoproteins/genetics , Models, Biological , Neoplasm Invasiveness , Organoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL