Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021893

ABSTRACT

Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.


Subject(s)
Birnaviridae Infections/virology , Genome, Viral , Infectious bursal disease virus/physiology , RNA, Double-Stranded/genetics , RNA-Binding Proteins/metabolism , Viral Structural Proteins/metabolism , Virus Assembly , Animals , Birnaviridae Infections/genetics , Birnaviridae Infections/metabolism , Capsid/physiology , Capsid/ultrastructure , Cells, Cultured , Coturnix/virology , Cryoelectron Microscopy , Infectious bursal disease virus/ultrastructure , Muscle Cells/virology , RNA-Binding Proteins/genetics , Viral Structural Proteins/genetics , Virion
2.
PLoS Pathog ; 13(12): e1006755, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29220409

ABSTRACT

Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Models, Molecular , RNA Viruses/metabolism , Amino Acid Sequence , Capsid/enzymology , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/genetics , Conserved Sequence , Cryoelectron Microscopy , Evolution, Molecular , Imaging, Three-Dimensional , Mutagenesis, Insertional , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Stability , RNA Viruses/enzymology , RNA Viruses/genetics , RNA Viruses/ultrastructure , Sequence Alignment , Structural Homology, Protein , Surface Properties , Virion/enzymology , Virion/genetics , Virion/metabolism , Virion/ultrastructure , Xylariales/virology
3.
J Virol ; 90(24): 11220-11230, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27707923

ABSTRACT

Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-Å-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization. IMPORTANCE: Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.


Subject(s)
Capsid Proteins/chemistry , Capsid/ultrastructure , Genome, Viral , RNA Viruses/ultrastructure , RNA, Viral/ultrastructure , Virion/ultrastructure , Amino Acid Sequence , Capsid/chemistry , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Protein Multimerization , Protein Structure, Secondary , RNA Viruses/chemistry , RNA, Viral/metabolism , Virion/chemistry , Virus Replication
4.
Proc Natl Acad Sci U S A ; 111(21): 7641-6, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24821769

ABSTRACT

Viruses evolve so rapidly that sequence-based comparison is not suitable for detecting relatedness among distant viruses. Structure-based comparisons suggest that evolution led to a small number of viral classes or lineages that can be grouped by capsid protein (CP) folds. Here, we report that the CP structure of the fungal dsRNA Penicillium chrysogenum virus (PcV) shows the progenitor fold of the dsRNA virus lineage and suggests a relationship between lineages. Cryo-EM structure at near-atomic resolution showed that the 982-aa PcV CP is formed by a repeated α-helical core, indicative of gene duplication despite lack of sequence similarity between the two halves. Superimposition of secondary structure elements identified a single "hotspot" at which variation is introduced by insertion of peptide segments. Structural comparison of PcV and other distantly related dsRNA viruses detected preferential insertion sites at which the complexity of the conserved α-helical core, made up of ancestral structural motifs that have acted as a skeleton, might have increased, leading to evolution of the highly varied current structures. Analyses of structural motifs only apparent after systematic structural comparisons indicated that the hallmark fold preserved in the dsRNA virus lineage shares a long (spinal) α-helix tangential to the capsid surface with the head-tailed phage and herpesvirus viral lineage.


Subject(s)
Evolution, Molecular , Models, Molecular , Nucleic Acid Conformation , Penicillium chrysogenum/virology , RNA Viruses/ultrastructure , RNA, Double-Stranded/ultrastructure , Amino Acid Sequence , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Molecular Sequence Data , Protein Folding , Protein Structure, Tertiary , RNA Viruses/genetics , RNA, Double-Stranded/genetics , Sequence Analysis, RNA
5.
Proc Natl Acad Sci U S A ; 110(50): 20063-8, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24277846

ABSTRACT

During infection, viruses undergo conformational changes that lead to delivery of their genome into host cytosol. In human rhinovirus A2, this conversion is triggered by exposure to acid pH in the endosome. The first subviral intermediate, the A-particle, is expanded and has lost the internal viral protein 4 (VP4), but retains its RNA genome. The nucleic acid is subsequently released, presumably through one of the large pores that open at the icosahedral twofold axes, and is transferred along a conduit in the endosomal membrane; the remaining empty capsids, termed B-particles, are shuttled to lysosomes for degradation. Previous structural analyses revealed important differences between the native protein shell and the empty capsid. Nonetheless, little is known of A-particle architecture or conformation of the RNA core. Using 3D cryo-electron microscopy and X-ray crystallography, we found notable changes in RNA-protein contacts during conversion of native virus into the A-particle uncoating intermediate. In the native virion, we confirmed interaction of nucleotide(s) with Trp(38) of VP2 and identified additional contacts with the VP1 N terminus. Study of A-particle structure showed that the VP2 contact is maintained, that VP1 interactions are lost after exit of the VP1 N-terminal extension, and that the RNA also interacts with residues of the VP3 N terminus at the fivefold axis. These associations lead to formation of a well-ordered RNA layer beneath the protein shell, suggesting that these interactions guide ordered RNA egress.


Subject(s)
Models, Molecular , Nucleic Acid Conformation , RNA, Viral/metabolism , Rhinovirus/physiology , Virion/chemistry , Virus Uncoating/physiology , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Image Processing, Computer-Assisted , RNA, Viral/chemistry , Rhinovirus/genetics
6.
J Virol ; 86(8): 4058-64, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22345483

ABSTRACT

Herpesviruses have an icosahedral nucleocapsid surrounded by an amorphous tegument and a lipoprotein envelope. The tegument comprises at least 20 proteins destined for delivery into the host cell. As the tegument does not have a regular structure, the question arises of how its proteins are recruited. The herpes simplex virus 1 (HSV-1) tegument is known to contact the capsid at its vertices, and two proteins, UL36 and UL37, have been identified as candidates for this interaction. We show that the interaction is mediated exclusively by UL36. HSV-1 nucleocapsids extracted from virions shed their UL37 upon incubation at 37°C. Cryo-electron microscopy (cryo-EM) analysis of capsids with and without UL37 reveals the same penton-capping density in both cases. As no other tegument proteins are retained in significant amounts, it follows that this density feature (∼100 kDa) represents the ordered portion of UL36 (336 kDa). It binds between neighboring UL19 protrusions and to an adjacent UL17 molecule. These observations support the hypothesis that UL36 plays a major role in the tegumentation of the virion, providing a flexible scaffold to which other tegument proteins, including UL37, bind. They also indicate how sequential conformational changes in the maturing nucleocapsid control the ordered binding, first of UL25/UL17 and then of UL36.


Subject(s)
Capsid Proteins/chemistry , Herpesvirus 1, Human/chemistry , Viral Proteins/chemistry , Binding Sites , Capsid Proteins/metabolism , Herpesvirus 1, Human/metabolism , Herpesvirus 1, Human/ultrastructure , Models, Molecular , Nucleocapsid/chemistry , Nucleocapsid/ultrastructure , Viral Proteins/metabolism , Virion/chemistry
7.
J Virol ; 86(12): 6470-80, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491457

ABSTRACT

Viruses need only one or a few structural capsid proteins to build an infectious particle. This is possible through the extensive use of symmetry and the conformational polymorphism of the structural proteins. Using virus-like particles (VLP) from rabbit hemorrhagic disease virus (RHDV) as a model, we addressed the basis of calicivirus capsid assembly and their application in vaccine design. The RHDV capsid is based on a T=3 lattice containing 180 identical subunits (VP1). We determined the structure of RHDV VLP to 8.0-Å resolution by three-dimensional cryoelectron microscopy; in addition, we used San Miguel sea lion virus (SMSV) and feline calicivirus (FCV) capsid subunit structures to establish the backbone structure of VP1 by homology modeling and flexible docking analysis. Based on the three-domain VP1 model, several insertion mutants were designed to validate the VP1 pseudoatomic model, and foreign epitopes were placed at the N- or C-terminal end, as well as in an exposed loop on the capsid surface. We selected a set of T and B cell epitopes of various lengths derived from viral and eukaryotic origins. Structural analysis of these chimeric capsids further validates the VP1 model to design new chimeras. Whereas most insertions are well tolerated, VP1 with an FCV capsid protein-neutralizing epitope at the N terminus assembled into mixtures of T=3 and larger T=4 capsids. The calicivirus capsid protein, and perhaps that of many other viruses, thus can encode polymorphism modulators that are not anticipated from the plane sequence, with important implications for understanding virus assembly and evolution.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Hemorrhagic Disease Virus, Rabbit/physiology , Virus Assembly , Amino Acid Motifs , Amino Acid Sequence , Animals , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Line , Epitopes/genetics , Epitopes/metabolism , Hemorrhagic Disease Virus, Rabbit/chemistry , Hemorrhagic Disease Virus, Rabbit/genetics , Imaging, Three-Dimensional , Molecular Sequence Data , Moths , Mutagenesis, Insertional , Sequence Alignment
8.
Adv Exp Med Biol ; 726: 403-22, 2012.
Article in English | MEDLINE | ID: mdl-22297524

ABSTRACT

Papillomaviruses are a diverse group of DNA viruses that infect the skin and mucosal tissues of vertebrates. More than 100 distinct human papillomavirus (HPV) genotypes have so far been identified. A subset of HPVs is known to cause human cancer. Although recently developed vaccines protect vaccinated individuals from the two most carcinogenic HPV types, there is a pressing need for next-generation vaccines that might offer broad-spectrum protection against the full range of cancer-causing HPVs. The ongoing development of such vaccines will be facilitated by a deeper understanding of the mechanics of the assembly of the nonenveloped papillomavirus virion, as well as the machine-like structural changes that occur in the virion during the process of infectious entry into host cells. This chapter reviews the field's current knowledge of these two aspects of papillomavirus biology and speculates about areas where further work is needed.


Subject(s)
Papillomaviridae/physiology , Papillomaviridae/ultrastructure , Virion/metabolism , Virion/ultrastructure , Animals , Humans , Models, Molecular , Papillomaviridae/genetics , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines , Protein Conformation , Viral Proteins/chemistry , Viral Proteins/metabolism
9.
Adv Exp Med Biol ; 726: 423-39, 2012.
Article in English | MEDLINE | ID: mdl-22297525

ABSTRACT

Herpesviruses, a family of animal viruses with large (125-250 kbp) linear DNA genomes, are highly diversified in terms of host range; nevertheless, their virions conform to a common architecture. The genome is confined at high density within a thick-walled icosahedral capsid with the uncommon (among viruses, generally) but unvarying triangulation number T = 16. The envelope is a membrane in which some 11 different viral glycoproteins are implanted. Between the capsid and the envelope is a capacious compartment called the tegument that accommodates ∼20-40 different viral proteins (depending on which virus) destined for delivery into a host cell. A strong body of evidence supports the hypothesis that herpesvirus capsids and those of tailed bacteriophages stem from a distant common ancestor, whereas their radically different infection apparatuses - envelope on one hand and tail on the other - reflect subsequent coevolution with divergent hosts. Here we review the molecular components of herpesvirus capsids and the mechanisms that regulate their assembly, with particular reference to the archetypal alphaherpesvirus, herpes simplex virus type 1; assess their duality with the capsids of tailed bacteriophages; and discuss the mechanism whereby, once DNA packaging has been completed, herpesvirus nucleocapsids exit from the nucleus to embark on later stages of the replication cycle.


Subject(s)
Capsid/metabolism , Herpesviridae/metabolism , Herpesviridae/ultrastructure , Virion/metabolism , Virus Assembly , Animals , Capsid/ultrastructure , Herpesviridae/pathogenicity , Humans , Models, Molecular , Protein Conformation , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Virion/ultrastructure , Virus Replication
10.
J Virol ; 82(11): 5190-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18367526

ABSTRACT

Papillomaviruses are a family of nonenveloped DNA tumor viruses. Some sexually transmitted human papillomavirus (HPV) types, including HPV type 16 (HPV16), cause cancer of the uterine cervix. Papillomaviruses encode two capsid proteins, L1 and L2. The major capsid protein, L1, can assemble spontaneously into a 72-pentamer icosahedral structure that closely resembles native virions. Although the minor capsid protein, L2, is not required for capsid formation, it is thought to participate in encapsidation of the viral genome and plays a number of essential roles in the viral infectious entry pathway. The abundance of L2 and its arrangement within the virion remain unclear. To address these questions, we developed methods for serial propagation of infectious HPV16 capsids (pseudoviruses) in cultured human cell lines. Biochemical analysis of capsid preparations produced using various methods showed that up to 72 molecules of L2 can be incorporated per capsid. Cryoelectron microscopy and image reconstruction analysis of purified capsids revealed an icosahedrally ordered L2-specific density beneath the axial lumen of each L1 capsomer. The relatively close proximity of these L2 density buttons to one another raised the possibility of homotypic L2 interactions within assembled virions. The concept that the N and C termini of neighboring L2 molecules can be closely apposed within the capsid was supported using bimolecular fluorescence complementation or "split GFP" technology. This structural information should facilitate investigation of L2 function during the assembly and entry phases of the papillomavirus life cycle.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Human papillomavirus 16/metabolism , Oncogene Proteins, Viral/metabolism , Capsid/ultrastructure , Capsid Proteins/genetics , Cell Line , Cryoelectron Microscopy , Human papillomavirus 16/genetics , Human papillomavirus 16/ultrastructure , Humans , Models, Molecular , Molecular Conformation , Oncogene Proteins, Viral/genetics , Virion/metabolism
11.
Curr Opin Struct Biol ; 15(2): 227-36, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15837183

ABSTRACT

For many viruses, the final stage of assembly involves structural transitions that convert an innocuous precursor particle into an infectious agent. This process -- maturation -- is controlled by proteases that trigger large-scale conformational changes. In this context, protease inhibitor antiviral drugs act by blocking maturation. Recent work has succeeded in determining the folds of representative examples of the five major proteins -- major capsid protein, scaffolding protein, portal, protease and accessory protein -- that are typically involved in capsid assembly. These data provide a framework for detailed mechanistic investigations and elucidation of mutations that affect assembly in various ways. The nature of the conformational change has been elucidated: it entails rigid-body rotations and translations of the arrayed subunits that transfer the interactions between them to different molecular surfaces, accompanied by refolding and redeployment of local motifs. Moreover, it has been possible to visualize maturation at the submolecular level in movies based on time-resolved cryo-electron microscopy.


Subject(s)
Models, Chemical , Models, Molecular , Viral Proteins/chemistry , Virus Assembly , Virus Diseases/virology , Viruses/chemistry , Viruses/growth & development , Animals , Capsid Proteins/chemistry , Computer Simulation , Humans , Kinetics , Models, Biological , Protein Conformation , Structure-Activity Relationship , Virus Activation , Virus Replication
12.
Structure ; 13(7): 1007-17, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16004873

ABSTRACT

The infectious bursal disease virus T=13 viral particle is composed of two major proteins, VP2 and VP3. Here, we show that the molecular basis of the conformational flexibility of the major capsid protein precursor, pVP2, is an amphipatic alpha helix formed by the sequence GFKDIIRAIR. VP2 containing this alpha helix is able to assemble into the T=13 capsid only when expressed as a chimeric protein with an N-terminal His tag. An amphiphilic alpha helix, which acts as a conformational switch, is thus responsible for the inherent structural polymorphism of VP2. The His tag mimics the VP3 C-terminal region closely and acts as a molecular triggering factor. Using cryo-electron microscopy difference imaging, both polypeptide elements were detected on the capsid inner surface. We propose that electrostatic interactions between these two morphogenic elements are transmitted to VP2 to acquire the competent conformations for capsid assembly.


Subject(s)
Capsid/chemistry , Infectious bursal disease virus/genetics , Polymorphism, Genetic , RNA Viruses/genetics , Amino Acid Sequence , Baculoviridae/genetics , Blotting, Western , Capsid Proteins/chemistry , Circular Dichroism , Cryoelectron Microscopy , Electrophoresis, Polyacrylamide Gel , Gene Deletion , Green Fluorescent Proteins/chemistry , Image Processing, Computer-Assisted , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Mutation , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Static Electricity
13.
Nanoscale ; 8(17): 9328-36, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27091107

ABSTRACT

Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ∼30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ∼20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.


Subject(s)
Capsid , Virion , Capsid Proteins , Cryoelectron Microscopy
14.
Adv Protein Chem ; 64: 301-23, 2003.
Article in English | MEDLINE | ID: mdl-13677051

ABSTRACT

Bacteriophage T7 is a double-stranded DNA bacteriophage that has attracted particular interest in studies of gene expression and regulation and of morphogenesis, as well as in biotechnological applications of expression vectors and phage display. We report here studies of T7 capsid assembly by cryoelectron microscopy and image analysis. T7 follows the canonical pathway of first forming a procapsid that converts into the mature capsid, but with some novel variations. The procapsid is a round particle with an icosahedral triangulation number of 7 levo, composed of regular pentamers and elongated hexamers. A singular vertex in the procapsid is occupied by the connector/portal protein, which forms 12-fold and 13-fold rings when overexpressed, of which the 12-mer appears to be the assembly-competent form. This vertex is the site of two symmetry mismatches: between the connector and the surrounding five gp 10 hexamers; and between the connector and the 8-fold cylindrical core mounted on its inner surface. The scaffolding protein, gp9, which is required for assembly, forms nubbin-like protrusions underlying the hexamers but not the pentamers, with no contacts between neighboring gp9 monomers. We propose that gp9 facilitates assembly by binding to gp10 hexamers, locking them into a morphogenically correct conformation. gp9 is expelled as the procapsid matures into the larger, thinner walled, polyhedral capsid. Several lines of evidence implicate the connector vertex as the site at which the maturation transformation is initiated: in vivo, maturation appears to be triggered by DNA packaging whereby the signal may involve interaction of the connector with DNA. In the mature T7 head, the DNA is organized as a tightly wound coaxial spool, with the DNA coiled around the core in at least four and perhaps as many as six concentric shells.


Subject(s)
Bacteriophage T7/chemistry , Bacteriophage T7/physiology , Capsid/chemistry , DNA, Viral/chemistry , Protein Precursors/chemistry , Bacteriophage T7/genetics , Bacteriophage T7/ultrastructure , Capsid/ultrastructure , DNA, Viral/genetics , DNA, Viral/metabolism , DNA, Viral/ultrastructure , Protein Precursors/ultrastructure
15.
J Mol Biol ; 327(1): 1-6, 2003 Mar 14.
Article in English | MEDLINE | ID: mdl-12614603

ABSTRACT

Like other bacteriophages, T7 has a singular vertex that is the site of a symmetry mismatch involving the portal/connector protein, a 12-fold ring at the vertex site which is also a 5-fold axis for the icosahedral capsid. In the mature virion, a 6-fold-symmetric tail extends outwards from the connector. T7 also has a cylindrical "core" that assembles on the inner surface of the connector during procapsid formation, is retained in the mature virion, and is required for infectivity. We have investigated the core structure by cryo-electron microscopy and image analysis of procapsids and find that it observes 8-fold symmetry. Stoichiometry data indicate that its major constituent is an octamer of gp15.


Subject(s)
Bacteriophage T7/chemistry , Bacteriophage T7/ultrastructure , Capsid/chemistry , Capsid/ultrastructure , Protein Precursors/chemistry , Protein Precursors/ultrastructure , Cryoelectron Microscopy , Protein Conformation , Viral Structural Proteins/chemistry , Viral Structural Proteins/ultrastructure , Virion/chemistry , Virion/ultrastructure
16.
mBio ; 5(4): e01104-14, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25096873

ABSTRACT

Papillomaviruses are a family of nonenveloped DNA viruses that infect the skin or mucosa of their vertebrate hosts. The viral life cycle is closely tied to the differentiation of infected keratinocytes. Papillomavirus virions are released into the environment through a process known as desquamation, in which keratinocytes lose structural integrity prior to being shed from the surface of the skin. During this process, virions are exposed to an increasingly oxidative environment, leading to their stabilization through the formation of disulfide cross-links between neighboring molecules of the major capsid protein, L1. We used time-lapse cryo-electron microscopy and image analysis to study the maturation of HPV16 capsids assembled in mammalian cells and exposed to an oxidizing environment after cell lysis. Initially, the virion is a loosely connected procapsid that, under in vitro conditions, condenses over several hours into the more familiar 60-nm-diameter papillomavirus capsid. In this process, the procapsid shrinks by ~5% in diameter, its pentameric capsomers change in structure (most markedly in the axial region), and the interaction surfaces between adjacent capsomers are consolidated. A C175S mutant that cannot achieve normal inter-L1 disulfide cross-links shows maturation-related shrinkage but does not achieve the fully condensed 60-nm form. Pseudoatomic modeling based on a 9-Å resolution reconstruction of fully mature capsids revealed C-terminal disulfide-stabilized "suspended bridges" that form intercapsomeric cross-links. The data suggest a model in which procapsids exist in a range of dynamic intermediates that can be locked into increasingly mature configurations by disulfide cross-linking, possibly through a Brownian ratchet mechanism. Importance: Human papillomaviruses (HPVs) cause nearly all cases of cervical cancer, a major fraction of cancers of the penis, vagina/vulva, anus, and tonsils, and genital and nongenital warts. HPV types associated with a high risk of cancer, such as HPV16, are generally transmitted via sexual contact. The nonenveloped virion of HPVs shows a high degree of stability, allowing the virus to persist in an infectious form in environmental fomites. In this study, we used cryo-electron microscopy to elucidate the structure of the HPV16 capsid at different stages of maturation. The fully mature capsid adopts a rigid, highly regular structure stabilized by intermolecular disulfide bonds. The availability of a pseudoatomic model of the fully mature HPV16 virion should help guide understanding of antibody responses elicited by HPV capsid-based vaccines.


Subject(s)
Capsid Proteins/ultrastructure , Human papillomavirus 16/growth & development , Human papillomavirus 16/ultrastructure , Cell Line , Cryoelectron Microscopy , Humans , Protein Structure, Secondary , Virion/ultrastructure
17.
Virology ; 445(1-2): 169-74, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23800545

ABSTRACT

The elegant icosahedral surface of the papillomavirus virion is formed by a single protein called L1. Recombinant L1 proteins can spontaneously self-assemble into a highly immunogenic structure that closely mimics the natural surface of native papillomavirus virions. This has served as the basis for two highly successful vaccines against cancer-causing human papillomaviruses (HPVs). During the viral life cycle, the capsid must undergo a variety of conformational changes, allowing key functions including the encapsidation of the ~8 kb viral genomic DNA, maturation into a more stable state to survive transit between hosts, mediating attachment to new host cells, and finally releasing the viral DNA into the newly infected host cell. This brief review focuses on conserved sequence and structural features that underlie the functions of this remarkable protein.


Subject(s)
Capsid Proteins/metabolism , Genes, Viral , Human papillomavirus 16/metabolism , Oncogene Proteins, Viral/metabolism , Amino Acid Sequence , Capsid Proteins/genetics , Conserved Sequence , Heparan Sulfate Proteoglycans/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/physiology , Humans , Oncogene Proteins, Viral/genetics , Protein Folding , Protein Interaction Mapping , Virus Assembly , Virus Internalization
18.
Virology ; 361(2): 426-34, 2007 May 10.
Article in English | MEDLINE | ID: mdl-17188319

ABSTRACT

Herpes simplex virus type 1 (HSV-1), the prototypical herpesvirus, has an icosahedral nucleocapsid surrounded by a proteinaceous tegument and a lipoprotein envelope. As in tailed bacteriophages, the icosahedral symmetry of the capsid is broken at one of the 12 vertices, which is occupied by a dodecameric ring of portal protein, UL6, instead of a pentamer of the capsid protein, UL19. The portal ring serves as a conduit for DNA entering and exiting the capsid. From a cryo-EM reconstruction of capsids immuno-gold-labeled with anti-UL6 antibodies, we confirmed that UL6 resides at a vertex. To visualize the portal in the context of the assembled capsid, we used cryo-electron tomography to determine the three-dimensional structures of individual A-capsids (empty, mature capsids). The similarity in size and overall shape of the portal and a UL19 pentamer--both are cylinders of approximately 800 kDa--combined with residual noise in the tomograms, prevented us from identifying the portal vertices directly; however, this was accomplished by a computational classification procedure. Averaging the portal-containing subtomograms produced a structure that tallies with the isolated portal, as previously reconstructed by cryo-EM. The portal is mounted on the outer surface of the capsid floor layer, with its narrow end pointing outwards. This disposition differs from that of known phage portals in that the bulk of its mass lies outside, not inside, the floor. This distinction may be indicative of divergence at the level of portal-related functions other than its role as a DNA channel.


Subject(s)
Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Herpesvirus 1, Human/ultrastructure , Animals , Chlorocebus aethiops , Image Processing, Computer-Assisted , Immunohistochemistry , Microscopy, Immunoelectron , Vero Cells , Viral Proteins
19.
Mol Cell ; 26(4): 479-89, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17531807

ABSTRACT

UL25 and UL17 are two essential minor capsid proteins of HSV-1, implicated in DNA packaging and capsid maturation. We used cryo-electron microscopy to examine their binding to capsids, whose architecture observes T = 16 icosahedral geometry. C-capsids (mature DNA-filled capsids) have an elongated two-domain molecule present at a unique, vertex-adjacent site that is not seen at other quasiequivalent sites or on unfilled capsids. Using SDS-PAGE and mass spectrometry to analyze wild-type capsids, UL25 null capsids, and denaturant-extracted capsids, we conclude that (1) the C-capsid-specific component is a heterodimer of UL25 and UL17, and (2) capsids have additional populations of UL25 and UL17 that are invisible in reconstructions because of sparsity and/or disorder. We infer that binding of the ordered population reflects structural changes induced on the outer surface as pressure builds up inside the capsid during DNA packaging. Its binding may signal that the C-capsid is ready to exit the nucleus.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Capsid/ultrastructure , Cell Nucleus/metabolism , Herpesvirus 1, Human/metabolism , Herpesvirus 1, Human/ultrastructure , Allosteric Regulation , Cryoelectron Microscopy , Dimerization , Image Processing, Computer-Assisted , Mass Spectrometry , Protein Binding , Protein Transport , Viral Proteins/metabolism
20.
J Virol ; 81(13): 6869-78, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17442720

ABSTRACT

Infectious bursal disease virus (IBDV), a double-stranded RNA (dsRNA) virus belonging to the Birnaviridae family, is an economically important avian pathogen. The IBDV capsid is based on a single-shelled T=13 lattice, and the only structural subunits are VP2 trimers. During capsid assembly, VP2 is synthesized as a protein precursor, called pVP2, whose 71-residue C-terminal end is proteolytically processed. The conformational flexibility of pVP2 is due to an amphipathic alpha-helix located at its C-terminal end. VP3, the other IBDV major structural protein that accomplishes numerous roles during the viral cycle, acts as a scaffolding protein required for assembly control. Here we address the molecular mechanism that defines the multimeric state of the capsid protein as hexamers or pentamers. We used a combination of three-dimensional cryo-electron microscopy maps at or close to subnanometer resolution with atomic models. Our studies suggest that the key polypeptide element, the C-terminal amphipathic alpha-helix, which acts as a transient conformational switch, is bound to the flexible VP2 C-terminal end. In addition, capsid protein oligomerization is also controlled by the progressive trimming of its C-terminal domain. The coordination of these molecular events correlates viral capsid assembly with different conformations of the amphipathic alpha-helix in the precursor capsid, as a five-alpha-helix bundle at the pentamers or an open star-like conformation at the hexamers. These results, reminiscent of the assembly pathway of positive single-stranded RNA viruses, such as nodavirus and tetravirus, add new insights into the evolutionary relationships of dsRNA viruses.


Subject(s)
Capsid/chemistry , Infectious bursal disease virus/chemistry , Models, Molecular , Viral Structural Proteins/chemistry , Virus Assembly , Capsid/ultrastructure , Cryoelectron Microscopy , Infectious bursal disease virus/metabolism , Infectious bursal disease virus/ultrastructure , Nodaviridae/chemistry , Nodaviridae/ultrastructure , Protein Processing, Post-Translational , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Viral Structural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL