Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Biol Chem ; 299(12): 105346, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37838170

ABSTRACT

Nsp3s are the largest nonstructural proteins of coronaviruses. These transmembrane proteins include papain-like proteases (PLpro) that play essential roles in cleaving viral polyproteins into their mature units. The PLpro of SARS-CoV viruses also have deubiquitinating and deISGylating activities. As Nsp3 is an endoplasmic reticulum (ER)-localized protein, we asked if the deubiquitinating activity of SARS-CoV-2 PLpro affects proteins that are substrates for ER-associated degradation (ERAD). Using full-length Nsp3 as well as a truncated transmembrane form we interrogated, by coexpression, three potential ERAD substrates, all of which play roles in regulating lipid biosynthesis. Transmembrane PLpro increases the level of INSIG-1 and decreases its ubiquitination. However, different effects were seen with SREBP-1 and SREBP-2. Transmembrane PLpro cleaves SREBP-1 at three sites, including two noncanonical sites in the N-terminal half of the protein, resulting in a decrease in precursors of the active transcription factor. Conversely, cleavage of SREBP-2 occurs at a single canonical site that disrupts a C-terminal degron, resulting in increased SREBP-2 levels. When this site is mutated and the degron can no longer be interrupted, SREBP-2 is still stabilized by transmembrane PLpro, which correlates with a decrease in SREBP-2 ubiquitination. All of these observations are dependent on PLpro catalytic activity. Our findings demonstrate that, when anchored to the ER membrane, SARS-CoV-2 Nsp3 PLpro can function as a deubiquitinating enzyme to stabilize ERAD substrates. Additionally, SARS-CoV-2 Nsp3 PLpro can cleave ER-resident proteins, including at sites that could escape analyses based on the established consensus sequence.


Subject(s)
COVID-19 , Endoplasmic Reticulum , Peptide Hydrolases , SARS-CoV-2 , Humans , COVID-19/virology , Endoplasmic Reticulum/enzymology , Peptide Hydrolases/metabolism , SARS-CoV-2/enzymology , Sterol Regulatory Element Binding Protein 1/metabolism , Ubiquitin/metabolism , HeLa Cells , HEK293 Cells , Proteolysis , Protein Stability , Sterol Regulatory Element Binding Protein 2/metabolism
2.
PLoS Biol ; 19(12): e3001474, 2021 12.
Article in English | MEDLINE | ID: mdl-34879065

ABSTRACT

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/genetics , Membrane Proteins/physiology , Ubiquitin-Conjugating Enzymes/physiology , Amino Acid Sequence/genetics , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Protein Binding/genetics , Protein Domains/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitination
3.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000579

ABSTRACT

Botulinum neurotoxins are some of the most potent natural toxins known; they cause flaccid paralysis by inhibiting synaptic vesicle release. Some serotypes, notably serotype A and B, can cause persistent paralysis lasting for several months. Because of their potency and persistence, botulinum neurotoxins are now used to manage several clinical conditions, and there is interest in expanding their clinical applications using engineered toxins with novel substrate specificities. It will also be beneficial to engineer toxins with tunable persistence. We have investigated the potential use of small-molecule proteolysis-targeting chimeras (PROTACs) to vary the persistence of modified recombinant botulinum neurotoxins. We also describe a complementary approach that has potential relevance for botulism treatment. This second approach uses a camelid heavy chain antibody directed against botulinum neurotoxin that is modified to bind the PROTAC. These strategies provide proof of principle for the use of two different approaches to fine tune the persistence of botulinum neurotoxins by selectively targeting their catalytic light chains for proteasomal degradation.


Subject(s)
Botulinum Toxins , Proteolysis , Botulinum Toxins/chemistry , Botulinum Toxins/metabolism , Humans , Animals , Proteasome Endopeptidase Complex/metabolism , Proteolysis Targeting Chimera
4.
Pharmacol Rev ; 72(2): 380-413, 2020 04.
Article in English | MEDLINE | ID: mdl-32107274

ABSTRACT

Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.


Subject(s)
Protein Engineering/methods , Ubiquitins/metabolism , Animals , Deubiquitinating Enzymes/metabolism , Humans , Ubiquitination
5.
FASEB J ; 33(1): 1235-1247, 2019 01.
Article in English | MEDLINE | ID: mdl-30113882

ABSTRACT

Ubiquitinylation drives many cellular processes by targeting proteins for proteasomal degradation. Ubiquitin conjugation enzymes promote ubiquitinylation and, thus, degradation of protein substrates. Ubiquitinylation is a well-known posttranslational modification controlling cell-cycle transitions and levels or/and activation levels of ubiquitin-conjugating enzymes change during development and cell cycle. Progression through the cell cycle is tightly controlled by CDK inhibitors such as p27Kip1. Here we show that, in contrast to promoting its degradation, the ubiquitin-conjugating enzyme UBCH7/UBE2L3 specifically protects p27Kip1 from degradation. Overexpression of UBCH7/UBE2L3 stabilizes p27Kip1 and delays the G1-to-S transition, while depletion of UBCH7/UBE2L3 increases turnover of p27Kip1. Levels of p21Cip1/Waf1, p57Kip2, cyclin A and cyclin E, all of which are also involved in regulating the G1/S transition are not affected by UBCH7/UBE2L3 depletion. The effect of UBCH7/UBE2L3 on p27Kip1 is not due to alteration of the levels of any of the ubiquitin ligases known to ubiquitinylate p27Kip1. Rather, UBCH7/UBE2L3 catalyzes the conjugation of heterotypic ubiquitin chains on p27Kip1 that are proteolytically incompetent. These data reveal new controls and concepts about the ubiquitin proteasome system in which a ubiquitin-conjugating enzyme selectively inhibits and may even protect, rather than promote degradation of a crucial cell-cycle regulatory molecule.-Whitcomb, E. A., Tsai, Y. C., Basappa, J., Liu, K., Le Feuvre, A. K., Weissman, A. M., Taylor, A. Stabilization of p27Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control.


Subject(s)
Cell Cycle , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Catalysis , Cell Line , Humans , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Proteolysis , Substrate Specificity , Ubiquitin/metabolism , Ubiquitination
6.
Mol Cell ; 47(4): 547-57, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22748923

ABSTRACT

Mitochondria play central roles in integrating pro- and antiapoptotic stimuli, and JNK is well known to have roles in activating apoptotic pathways. We establish a critical link between stress-induced JNK activation, mitofusin 2, which is an essential component of the mitochondrial outer membrane fusion apparatus, and the ubiquitin-proteasome system (UPS). JNK phosphorylation of mitofusin 2 in response to cellular stress leads to recruitment of the ubiquitin ligase (E3) Huwe1/Mule/ARF-BP1/HectH9/E3Histone/Lasu1 to mitofusin 2, with the BH3 domain of Huwe1 implicated in this interaction. This results in ubiquitin-mediated proteasomal degradation of mitofusin 2, leading to mitochondrial fragmentation and enhanced apoptotic cell death. The stability of a nonphosphorylatable mitofusin 2 mutant is unaffected by stress and protective against apoptosis. Conversely, a mitofusin 2 phosphomimic is more rapidly degraded without cellular stress. These findings demonstrate how proximal signaling events can influence both mitochondrial dynamics and apoptosis through phosphorylation-stimulated degradation of the mitochondrial fusion machinery.


Subject(s)
Apoptosis/physiology , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Stress, Physiological/physiology , BH3 Interacting Domain Death Agonist Protein/metabolism , Cell Line, Tumor , Humans , MAP Kinase Kinase 4/metabolism , Mitochondria/enzymology , Phosphorylation , Proteolysis , Tumor Suppressor Proteins , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology
7.
Proc Natl Acad Sci U S A ; 114(26): E5158-E5166, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28584101

ABSTRACT

Botulism is characterized by flaccid paralysis, which can be caused by intoxication with any of the seven known serotypes of botulinum neurotoxin (BoNT), all of which disrupt synaptic transmission by endoproteolytic cleavage of SNARE proteins. BoNT serotype A (BoNT/A) has the most prolonged or persistent effects, which can last several months, and exerts its effects by specifically cleaving and inactivating SNAP25. A major factor contributing to the persistence of intoxication is the long half-life of the catalytic light chain, which remains enzymatically active months after entry into cells. Here we report that BoNT/A catalytic light chain binds to, and is a substrate for, the ubiquitin ligase HECTD2. However, the light chain evades proteasomal degradation by the dominant effect of a deubiquitinating enzyme, VCIP135/VCPIP1. This deubiquitinating enzyme binds BoNT/A light chain directly, with the two associating in cells through the C-terminal 77 amino acids of the light chain protease. The development of specific DUB inhibitors, together with inhibitors of BoNT/A proteolytic activity, may be useful for reducing the morbidity and public health costs associated with BoNT/A intoxication and could have potential biodefense implications.


Subject(s)
Botulinum Toxins, Type A/pharmacokinetics , Botulinum Toxins, Type A/toxicity , Endopeptidases/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Endopeptidases/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Mol Cell ; 34(6): 674-85, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19560420

ABSTRACT

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Subject(s)
Receptors, Cytokine/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , RING Finger Domains , Receptors, Autocrine Motility Factor , Receptors, Cytokine/metabolism , Receptors, Cytokine/physiology , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination
9.
J Biol Chem ; 290(51): 30225-39, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26475854

ABSTRACT

RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination , Humans , Mutation , Protein Binding , Protein Structure, Tertiary , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
PLoS Biol ; 9(3): e1001038, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21468305

ABSTRACT

Proteins are co-translationally inserted into the endoplasmic reticulum (ER) where they undergo maturation. Homeostasis in the ER requires a highly sensitive and selective means of quality control. This occurs through ER-associated degradation (ERAD).This complex ubiquitin-proteasome­mediated process involves ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3),lumenal and cytosolic chaperones, and other proteins, including the AAA ATPase p97 (VCP; Cdc48 in yeast). Probing of processes involving proteasomal degradation has generally depended on proteasome inhibitors or knockdown of specific E2s or E3s. In this issue of PLoS Biology, Ernst et al. demonstrate the utility of expressing the catalytic domain of a viral deubiquitylating enzyme to probe the ubiquitin system. Convincing evidence is provided that deubiquitylation is integral to dislocation of ERAD substrates from the ER membrane. The implications of this work for understanding ERAD and the potential of expressing deubiquitylating enzyme domains for studying ubiquitin-mediated processes are discussed.


Subject(s)
Endoplasmic Reticulum/metabolism , Proteins/metabolism , Molecular Chaperones/metabolism , Stress, Physiological , Ubiquitination , Unfolded Protein Response/physiology
11.
Proc Natl Acad Sci U S A ; 107(38): 16554-9, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20823219

ABSTRACT

Botulinum neurotoxins (BoNTs) are the most potent natural toxins known. The effects of BoNT serotype A (BoNT/A) can last several months, whereas the effects of BoNT serotype E (BoNT/E), which shares the same synaptic target, synaptosomal-associated protein 25 (SNAP25), last only several weeks. The long-lasting effects or persistence of BoNT/A, although desirable for therapeutic applications, presents a challenge for medical treatment of BoNT intoxication. Although the mechanisms for BoNT toxicity are well known, little is known about the mechanisms that govern the persistence of the toxins. We show that the recombinant catalytic light chain (LC) of BoNT/E is ubiquitylated and rapidly degraded in cells. In contrast, BoNT/A LC is considerably more stable. Differential susceptibility of the catalytic LCs to ubiquitin-dependent proteolysis therefore might explain the differential persistence of BoNT serotypes. In this regard we show that TRAF2, a RING finger protein implicated in ubiquitylation, selectively associates with BoNT/E LC and promotes its proteasomal degradation. Given these data, we asked whether BoNT/A LC could be targeted for rapid proteasomal degradation by redirecting it to characterized ubiquitin ligase domains. We describe chimeric SNAP25-based ubiquitin ligases that target BoNT/A LC for degradation, reducing its duration in a cellular model for toxin persistence.


Subject(s)
Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/toxicity , Botulinum Toxins/metabolism , Botulinum Toxins/toxicity , Clostridium botulinum type A/physiology , Clostridium botulinum type A/pathogenicity , Clostridium botulinum type E/physiology , Clostridium botulinum type E/pathogenicity , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Botulinum Toxins/genetics , Botulinum Toxins, Type A/genetics , Cell Line , Clostridium botulinum type A/genetics , Clostridium botulinum type E/genetics , Genes, Bacterial , Humans , Mice , Molecular Sequence Data , Neurons/drug effects , Neurons/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism
12.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35639484

ABSTRACT

Women of African ancestry suffer higher rates of breast cancer mortality compared with all other groups in the United States. Though the precise reasons for these disparities remain unclear, many recent studies have implicated a role for differences in tumor biology. Using an epitope-validated antibody against the endoplasmic reticulum-associated E3 ligase, gp78, we show that elevated levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 are associated with poor outcomes in both ER+ and ER- tumors, and breast cancers expressing elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological complete response in retrospective clinical trial data and share many common features with gene sets previously identified to be overrepresented in breast cancers based on race. These findings implicate a prominent role for gp78 in tumor progression and offer insights into our understanding of racial differences in breast cancer outcomes.


Subject(s)
Breast Neoplasms , Ubiquitin-Protein Ligases , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Endoplasmic Reticulum/metabolism , Female , Humans , Retrospective Studies , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
13.
Nat Struct Mol Biol ; 13(3): 264-71, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16462746

ABSTRACT

Rabex-5 is an exchange factor for Rab5, a master regulator of endosomal trafficking. Rabex-5 binds monoubiquitin, undergoes covalent ubiquitination and contains an intrinsic ubiquitin ligase activity, all of which require an N-terminal A20 zinc finger followed immediately by a helix. The structure of the N-terminal portion of Rabex-5 bound to ubiquitin at 2.5-A resolution shows that Rabex-5-ubiquitin interactions occur at two sites. The first site is a new type of ubiquitin-binding domain, an inverted ubiquitin-interacting motif, which binds with approximately 29-microM affinity to the canonical Ile44 hydrophobic patch on ubiquitin. The second is a diaromatic patch on the A20 zinc finger, which binds with approximately 22-microM affinity to a polar region centered on Asp58 of ubiquitin. The A20 zinc-finger diaromatic patch mediates ubiquitin-ligase activity by directly recruiting a ubiquitin-loaded ubiquitin-conjugating enzyme.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Cattle , Conserved Sequence , Crystallography, X-Ray , DNA Mutational Analysis , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Thermodynamics , Ubiquitin/chemistry , Ubiquitin-Protein Ligases/metabolism , Zinc Fingers
14.
Nat Commun ; 11(1): 333, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949145

ABSTRACT

Cutaneous malignant melanoma is an aggressive cancer of melanocytes with a strong propensity to metastasize. We posit that melanoma cells acquire metastatic capability by adopting an embryonic-like phenotype, and that a lineage approach would uncover metastatic melanoma biology. Using a genetically engineered mouse model to generate a rich melanoblast transcriptome dataset, we identify melanoblast-specific genes whose expression contribute to metastatic competence and derive a 43-gene signature that predicts patient survival. We identify a melanoblast gene, KDELR3, whose loss impairs experimental metastasis. In contrast, KDELR1 deficiency enhances metastasis, providing the first example of different disease etiologies within the KDELR-family of retrograde transporters. We show that KDELR3 regulates the metastasis suppressor, KAI1, and report an interaction with the E3 ubiquitin-protein ligase gp78, a regulator of KAI1 degradation. Our work demonstrates that the melanoblast transcriptome can be mined to uncover targetable pathways for melanoma therapy.


Subject(s)
Gene Expression Profiling , Melanoma/genetics , Melanoma/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transcriptome , Animals , Cell Line, Tumor , Endoplasmic Reticulum , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kangai-1 Protein/genetics , Kangai-1 Protein/metabolism , Lung/pathology , Melanocytes/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/genetics , Neoplasms, Second Primary/pathology , Phenotype , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Skin Neoplasms/pathology , Ubiquitin-Protein Ligases/metabolism , Melanoma, Cutaneous Malignant
15.
Biochem Biophys Res Commun ; 390(3): 758-62, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-19835843

ABSTRACT

There are an increasing number of ubiquitin ligases (E3s) implicated in endoplasmic reticulum (ER)-associated degradation (ERAD) in mammals. The two for which the greatest amount of information exists are the RING finger proteins gp78 and Hrd1, which are the structural orthologs of the yeast ERAD E3 Hrd1p. We now report that Hrd1, also known as synoviolin, targets gp78 for proteasomal degradation independent of the ubiquitin ligase activity of gp78, without evidence of a reciprocal effect. This degradation is observed in mouse embryonic fibroblasts lacking Hrd1, as well as with acute manipulation of Hrd1. The significance of this is underscored by the diminished level of a gp78-specific substrate, Insig-1, when Hrd1 expression is decreased and gp78 levels are consequently increased. These finding demonstrate a previously unappreciated level of complexity of the ubiquitin system in ERAD and have potentially important ramifications for processes where gp78 is implicated including regulation of lipid metabolism, metastasis, cystic fibrosis and neurodegenerative disorders.


Subject(s)
Endoplasmic Reticulum/enzymology , Proteasome Endopeptidase Complex/metabolism , Receptors, Cytokine/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line , Humans , Mice , Receptors, Autocrine Motility Factor , Receptors, Cytokine/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
16.
Virus Res ; 141(1): 1-12, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19200810

ABSTRACT

The Sindbis viral expression system enables the rapid production of high levels of recombinant protein in mammalian cells; however, this expression is typically limited to transient production due to the cytotoxicity of the virus. Limiting the lethality inherent in the Sindbis virus vector in order to enable long term, sustained expression of recombinant proteins may be possible. In this study, modifications to virus and host have been combined in order to reduce the cytopathic effects. Non-cytopathic replication competent viruses of two Sindbis viral strains, TE and 633, were developed using a non-structural protein (nsP) P726S point mutation in order to obtain persistent heterologous gene expression in infected Baby Hamster Kidney (BHK) cells and Chinese Hamster Ovary (CHO) cells. Cells infected with the P726S variant viruses were able to recover after infection, while cells infected with normal virus died within 3 days. The P726S mutation did not reduce the susceptibility of 5- and 14-day-old mice to 633 and TE viruses in vivo. In addition, animal survival with the P726S variant viruses was increased and GFP expression was sustained for at least 14 days while the 633 and TE infection resulted in short-term GFP expression or an earlier mortality. Modifications to the host BHK and CHO cells themselves were subsequently undertaken by including the anti-apoptotic gene Bcl-2 and a deletion mutant of Bcl-2 (Bcl-2Delta) as another method for limiting the cytopathic effects of the Sindbis virus. The inclusion of anti-apoptotic genes permitted higher production of heterologous GFP protein following Sindbis virus infection, and the combination of the TE-P726S virus and the CHO-Bcl-2Delta cell line showed the greatest improvement in cell survival. Sindbis virus infection also induced ER stress in mammalian cells as detected by increased PERK phosphorylation and ATF4 translation. Overexpression of Parkin, an E3 ubiquitin ligase that can protect cells against agents that induce ER stress, suppressed Sindbis virus-induced cell death in both BHK cells and in vivo studies in mice. Such findings show that viral and host modifications can improve cell survival and production of heterologous proteins, change viral behavior in vitro and in vivo, and assist in the development of new expression or gene delivery vehicles.


Subject(s)
Alphavirus Infections/genetics , Gene Expression , Genetic Engineering/methods , Host-Pathogen Interactions , Sindbis Virus/genetics , Alphavirus Infections/metabolism , Alphavirus Infections/virology , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Humans , Mice , Sindbis Virus/metabolism
17.
Cancer Res ; 67(19): 9472-81, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17909057

ABSTRACT

The conjugation of proteins with ubiquitin plays numerous regulatory roles through both proteasomal-dependent and nonproteasomal-dependent functions. Alterations in ubiquitylation are observed in a wide range of pathologic conditions, including numerous malignancies. For this reason, there is great interest in targeting the ubiquitin-proteasome system in cancer. Several classes of proteasome inhibitors, which block degradation of ubiquitylated proteins, are widely used in research, and one, Bortezomib, is now in clinical use. Despite the well-defined and central role of the ubiquitin-activating enzyme (E1), no cell permeable inhibitors of E1 have been identified. Such inhibitors should, in principle, block all functions of ubiquitylation. We now report 4[4-(5-nitro-furan-2-ylmethylene)-3,5-dioxo-pyrazolidin-1-yl]-benzoic acid ethyl ester (PYR-41) as the first such inhibitor. Unexpectedly, in addition to blocking ubiquitylation, PYR-41 increased total sumoylation in cells. The molecular basis for this is unknown; however, increased sumoylation was also observed in cells harboring temperature-sensitive E1. Functionally, PYR-41 attenuates cytokine-mediated nuclear factor-kappaB activation. This correlates with inhibition of nonproteasomal (Lys-63) ubiquitylation of TRAF6, which is essential to IkappaB kinase activation. PYR-41 also prevents the downstream ubiquitylation and proteasomal degradation of IkappaBalpha. Furthermore, PYR-41 inhibits degradation of p53 and activates the transcriptional activity of this tumor suppressor. Consistent with this, it differentially kills transformed p53-expressing cells. Thus, PYR-41 and related pyrazones provide proof of principle for the capacity to differentially kill transformed cells, suggesting the potential for E1 inhibitors as therapeutics in cancer. These inhibitors can also be valuable tools for studying ubiquitylation.


Subject(s)
Benzoates/pharmacology , Furans/pharmacology , Pyrazoles/pharmacology , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cytokines/metabolism , HeLa Cells , Humans , I-kappa B Kinase/metabolism , Jurkat Cells , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , Rabbits , Substrate Specificity , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Ubiquitin-Activating Enzymes/metabolism
18.
Biophys J ; 94(1): 286-97, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17766334

ABSTRACT

We investigate the effect of mitochondrial localization and the Bcl-x(L) C-terminal transmembrane (TM) domain on mitochondrial morphology and subcellular light scattering. CSM 14.1 cell lines stably expressed yellow fluorescent protein (YFP), YFP-Bcl-x(L,) YFP-Bcl-x(L)-DeltaTM, containing the remainder of Bcl-x(L) after deletion of the last 21 amino acids corresponding to the TM domain, or YFP-TM, consisting of YFP fused at its C-terminal to the last 21 amino acids of Bcl-x(L). YFP-Bcl-x(L) and YFP-TM localized to the mitochondria. Their expression decreased the intensity ratio of wide-to-narrow angle forward scatter by subcellular organelles, and correlated with an increase in the proportion of mitochondria with an expanded matrix having greatly reduced intracristal spaces as observed by electron microscopy. Cells expressing YFP-TM also exhibited significant autophagy. In contrast, YFP-Bcl-x(L)-DeltaTM was diffusely distributed in the cells, and its expression did not alter light scattering or mitochondrial morphology compared with parental cells. Expression of YFP-Bcl-x(L) or YFP-Bcl-x(L)-DeltaTM provided significant resistance to staurosporine-induced apoptosis. Surprisingly however, YFP-TM expression also conferred a moderate level of cell death resistance in response to staurosporine. Taken together, our results suggest the existence of a secondary Bcl-x(L) function that is mediated by the transmembrane domain, alters mitochondrial morphology, and is distinct from BH3 domain sequestration.


Subject(s)
Cell Membrane/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Neurons/metabolism , Neurons/ultrastructure , bcl-X Protein/metabolism , Animals , Cell Line , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Cell Size , Neurons/chemistry , Protein Structure, Tertiary , Rats
19.
PLoS One ; 12(9): e0185089, 2017.
Article in English | MEDLINE | ID: mdl-28926611

ABSTRACT

Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.


Subject(s)
Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Unfolded Protein Response/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Eukaryotic Initiation Factor-2/metabolism , Humans , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA Splicing/drug effects , RNA, Messenger/metabolism , RNA, Ribosomal, 28S/metabolism , Sarcoma/metabolism , Sarcoma/pathology , Solvents/chemistry , Solvents/metabolism , TOR Serine-Threonine Kinases/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
20.
Cell Chem Biol ; 24(2): 231-242, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28163016

ABSTRACT

Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.


Subject(s)
Esters/metabolism , Sulfhydryl Compounds/metabolism , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/metabolism , Acylation , Esters/chemistry , Humans , Models, Molecular , Molecular Structure , Proteomics , Sulfhydryl Compounds/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL