Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 458
Filter
Add more filters

Publication year range
1.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33125898

ABSTRACT

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Subject(s)
Alleles , CRISPR-Associated Protein 9/metabolism , Chromosomes, Human/genetics , Embryo, Mammalian/metabolism , Animals , Base Sequence , Blastocyst/metabolism , Cell Cycle/genetics , Cell Line , Chromosome Deletion , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Embryo Implantation/genetics , Eye Proteins/genetics , Fertilization , Gene Editing , Gene Rearrangement/genetics , Genetic Loci , Genome, Human , Genotype , Heterozygote , Human Embryonic Stem Cells/metabolism , Humans , INDEL Mutation/genetics , Mice , Mitosis , Open Reading Frames/genetics , Polymorphism, Single Nucleotide/genetics
2.
Cell ; 159(1): 200-214, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25259927

ABSTRACT

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Subject(s)
Disease/genetics , Drosophila melanogaster/genetics , Genetic Testing , Inheritance Patterns , RNA Interference , Animals , Disease Models, Animal , Humans , X Chromosome
3.
Cell ; 154(2): 452-64, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23870131

ABSTRACT

Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP:


Subject(s)
Genetic Techniques , Mice, Knockout , Phenotype , Animals , Disease/genetics , Disease Models, Animal , Female , Genes, Essential , Genome-Wide Association Study , Male , Mice
4.
Proc Natl Acad Sci U S A ; 120(19): e2215005120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126685

ABSTRACT

Genome-wide association studies (GWAS) have identified genetic risk loci for age-related macular degeneration (AMD) on the chromosome 10q26 (Chr10) locus and are tightly linked: the A69S (G>T) rs10490924 single-nucleotide variant (SNV) and the AATAA-rich insertion-deletion (indel, del443/ins54), which are found in the age-related maculopathy susceptibility 2 (ARMS2) gene, and the G512A (G>A) rs11200638 SNV, which is found in the high-temperature requirement A serine peptidase 1 (HTRA1) promoter. The fourth variant is Y402H complement factor H (CFH), which directs CFH signaling. CRISPR manipulation of retinal pigment epithelium (RPE) cells may allow one to isolate the effects of the individual SNV and thus identify SNV-specific effects on cell phenotype. Clustered regularly interspaced short palindromic repeats (CRISPR) editing demonstrates that rs10490924 raised oxidative stress in induced pluripotent stem cell (iPSC)-derived retinal cells from patients with AMD. Sodium phenylbutyrate preferentially reverses the cell death caused by ARMS2 rs10490924 but not HTRA1 rs11200638. This study serves as a proof of concept for the use of patient-specific iPSCs for functional annotation of tightly linked GWAS to study the etiology of a late-onset disease phenotype. More importantly, we demonstrate that antioxidant administration may be useful for reducing reactive oxidative stress in AMD, a prevalent late-onset neurodegenerative disorder.


Subject(s)
Induced Pluripotent Stem Cells , Macular Degeneration , Humans , High-Temperature Requirement A Serine Peptidase 1/genetics , Induced Pluripotent Stem Cells/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Proteins/metabolism , Serine Endopeptidases/genetics , Genome-Wide Association Study , Macular Degeneration/genetics , Oxidative Stress , Polymorphism, Single Nucleotide , Complement Factor H/genetics , Genotype
5.
PLoS Genet ; 18(3): e1010129, 2022 03.
Article in English | MEDLINE | ID: mdl-35353811

ABSTRACT

Over 1,500 variants in the ABCA4 locus cause phenotypes ranging from severe, early-onset retinal degeneration to very late-onset maculopathies. The resulting ABCA4/Stargardt disease is the most prevalent Mendelian eye disorder, although its underlying clinical heterogeneity, including penetrance of many alleles, are not well-understood. We hypothesized that a share of this complexity is explained by trans-modifiers, i.e., variants in unlinked loci, which are currently unknown. We sought to identify these by performing exome sequencing in a large cohort for a rare disease of 622 cases and compared variation in seven genes known to clinically phenocopy ABCA4 disease to cohorts of ethnically matched controls. We identified a significant enrichment of variants in 2 out of the 7 genes. Moderately rare, likely functional, variants, at the minor allele frequency (MAF) <0.005 and CADD>25, were enriched in ROM1, where 1.3% of 622 patients harbored a ROM1 variant compared to 0.3% of 10,865 controls (p = 2.41E04; OR 3.81 95% CI [1.77; 8.22]). More importantly, analysis of common variants (MAF>0.1) identified a frequent haplotype in PRPH2, tagged by the p.Asp338 variant with MAF = 0.21 in the matched general population that was significantly increased in the patient cohort, MAF 0.25, p = 0.0014. Significant differences were also observed between ABCA4 disease subgroups. In the late-onset subgroup, defined by the hypomorphic p.Asn1868Ile variant and including c.4253+43G>A, the allele frequency for the PRPH2 p.Asp338 variant was 0.15 vs 0.27 in the remaining cohort, p = 0.00057. Known functional data allowed suggesting a mechanism by which the PRPH2 haplotype influences the ABCA4 disease penetrance. These associations were replicated in an independent cohort of 408 patients. The association was highly statistically significant in the combined cohorts of 1,030 cases, p = 4.00E-05 for all patients and p = 0.00014 for the hypomorph subgroup, suggesting a substantial trans-modifying role in ABCA4 disease for both rare and common variants in two unlinked loci.


Subject(s)
ATP-Binding Cassette Transporters , Macular Degeneration , ATP-Binding Cassette Transporters/genetics , Eye Proteins/genetics , Gene Frequency , Humans , Macular Degeneration/genetics , Mutation , Pedigree , Phenotype , Stargardt Disease/genetics , Tetraspanins/genetics
6.
Hum Mol Genet ; 31(14): 2438-2451, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35195241

ABSTRACT

Retinitis pigmentosa (RP) is caused by one of many possible gene mutations. The National Institutes of Health recommends high daily doses of vitamin A palmitate for RP patients. There is a critical knowledge gap surrounding the therapeutic applicability of vitamin A to patients with the different subtypes of the disease. Here, we present a case report of a patient with RP caused by a p.D190N mutation in Rhodopsin (RHO) associated with abnormally high quantitative autofluorescence values after long-term vitamin A supplementation. We investigated the effects of vitamin A treatment strategy on RP caused by the p.D190N mutation in RHO by exposing Rhodopsin p.D190N (RhoD190N/+) and wild-type (WT) mice to experimental vitamin A-supplemented and standard control diets. The patient's case suggests that the vitamin A treatment strategy should be further studied to determine its effect on RP caused by p.D190N mutation in RHO and other mutations. Our mouse experiments revealed that RhoD190N/+ mice on the vitamin A diet exhibited higher levels of autofluorescence and lipofuscin metabolites compared to WT mice on the same diet and isogenic controls on the standard control diet. Vitamin A supplementation diminished photoreceptor function in RhoD190N/+ mice while preserving cone response in WT mice. Our findings highlight the importance of more investigations into the efficacy of clinical treatments like vitamin A for patients with certain genetic subtypes of disease and of genotyping in the precision care of inherited retinal degenerations.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Dietary Supplements , Mice , Mutation , Retinal Degeneration/genetics , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Vitamin A
7.
Am J Hum Genet ; 108(5): 903-918, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33909993

ABSTRACT

Macular degeneration (MD) is characterized by the progressive deterioration of the macula and represents one of the most prevalent causes of blindness worldwide. Abnormal intracellular accumulation of lipid droplets and pericellular deposits of lipid-rich material in the retinal pigment epithelium (RPE) called drusen are clinical hallmarks of different forms of MD including Doyne honeycomb retinal dystrophy (DHRD) and age-related MD (AMD). However, the appropriate molecular therapeutic target underlying these disorder phenotypes remains elusive. Here, we address this knowledge gap by comparing the proteomic profiles of induced pluripotent stem cell (iPSC)-derived RPEs (iRPE) from individuals with DHRD and their isogenic controls. Our analysis and follow-up studies elucidated the mechanism of lipid accumulation in DHRD iRPE cells. Specifically, we detected significant downregulation of carboxylesterase 1 (CES1), an enzyme that converts cholesteryl ester to free cholesterol, an indispensable process in cholesterol export. CES1 knockdown or overexpression of EFEMP1R345W, a variant of EGF-containing fibulin extracellular matrix protein 1 that is associated with DHRD and attenuated cholesterol efflux and led to lipid droplet accumulation. In iRPE cells, we also found that EFEMP1R345W has a hyper-inhibitory effect on epidermal growth factor receptor (EGFR) signaling when compared to EFEMP1WT and may suppress CES1 expression via the downregulation of transcription factor SP1. Taken together, these results highlight the homeostatic role of cholesterol efflux in iRPE cells and identify CES1 as a mediator of cholesterol efflux in MD.


Subject(s)
Cholesterol/metabolism , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Adolescent , Adult , Carboxylic Ester Hydrolases/genetics , Cell Differentiation/genetics , Cytokines/metabolism , ErbB Receptors/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Humans , Inflammation/metabolism , Lipid Metabolism , Macular Degeneration/pathology , Middle Aged , Optic Disk Drusen/congenital , Optic Disk Drusen/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Retinal Pigment Epithelium/pathology , Signal Transduction , Sp1 Transcription Factor/metabolism , Transcription, Genetic , Unfolded Protein Response
8.
Mol Ther ; 31(7): 2028-2041, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37056049

ABSTRACT

In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.


Subject(s)
Parvovirinae , Retinitis Pigmentosa , Humans , Animals , Dogs , Mice , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Retinitis Pigmentosa/metabolism , Retina/metabolism , Electroretinography , Rhodopsin/metabolism
9.
Hum Mol Genet ; 30(14): 1293-1304, 2021 06 26.
Article in English | MEDLINE | ID: mdl-33909047

ABSTRACT

Over 1200 variants in the ABCA4 gene cause a wide variety of retinal disease phenotypes, the best known of which is autosomal recessive Stargardt disease (STGD1). Disease-causing variation encompasses all mutation categories, from large copy number variants to very mild, hypomorphic missense variants. The most prevalent disease-causing ABCA4 variant, present in ~ 20% of cases of European descent, c.5882G > A p.(Gly1961Glu), has been a subject of controversy since its minor allele frequency (MAF) is as high as ~ 0.1 in certain populations, questioning its pathogenicity, especially in homozygous individuals. We sequenced the entire ~140Kb ABCA4 genomic locus in an extensive cohort of 644 bi-allelic, i.e. genetically confirmed, patients with ABCA4 disease and analyzed all variants in 140 compound heterozygous and 10 homozygous cases for the p.(Gly1961Glu) variant. A total of 23 patients in this cohort additionally harbored the deep intronic c.769-784C > T variant on the p.(Gly1961Glu) allele, which appears on a specific haplotype in ~ 15% of p.(Gly1961Glu) alleles. This haplotype was present in 5/7 of homozygous cases, where the p.(Gly1961Glu) was the only known pathogenic variant. Three cases had an exonic variant on the same allele with the p.(Gly1961Glu). Patients with the c.[769-784C > T;5882G > A] complex allele exhibit a more severe clinical phenotype, as seen in compound heterozygotes with some more frequent ABCA4 mutations, e.g. p.(Pro1380Leu). Our findings indicate that the c.769-784C > T variant is major cis-acting modifier of the p.(Gly1961Glu) allele. The absence of such additional allelic variation on most p.(Gly1961Glu) alleles largely explains the observed paucity of affected homozygotes in the population.


Subject(s)
ATP-Binding Cassette Transporters , ATP-Binding Cassette Transporters/genetics , Alleles , Gene Frequency , Humans , Mutation , Penetrance , Phenotype , Stargardt Disease/genetics
10.
Doc Ophthalmol ; 146(3): 267-272, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36609934

ABSTRACT

INTRODUCTION: Mutations in the peripherin-2 gene (PRPH2) are a common cause of inherited retinal dystrophies well known for their phenotypic diversity. We describe a novel presentation of the c.623G > A; p.(Gly208Asp) variant in association with cone-rod dystrophy and reduced penetrance. CASE DESCRIPTION: A 39-year-old man presents with a history of decreased visual acuity, photophobia, and dyschromatopsia. Fundus examination was largely unremarkable while spectral-domain optical coherence tomography (SD-OCT) demonstrated diffuse granularity at the ellipsoid zone. Full-field electroretinogram (ffERG) revealed a cone-rod dystrophy. Genetic testing revealed a heterozygous pathogenic variant, c.623G > A; p.(Gly208Asp), in the PRPH2 gene, also found in an unaffected brother. The 50-year-old brother had no visual symptoms and no findings on fundus examination. SD-OCT showed normal retinal architecture and ffERG was within normal limits bilaterally. CONCLUSION: This case report broadens the known phenotypic presentations of PRPH2-associated retinopathy and suggests that the PRPH2 variant c.623G > A; p.(Gly208Asp) may be associated with reduced penetrance.


Subject(s)
Cone-Rod Dystrophies , Retinitis Pigmentosa , Male , Humans , Adult , Middle Aged , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Penetrance , Electroretinography , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Mutation , Biological Variation, Population , Tomography, Optical Coherence , Phenotype
11.
Doc Ophthalmol ; 147(3): 217-224, 2023 12.
Article in English | MEDLINE | ID: mdl-37804373

ABSTRACT

INTRODUCTION: Leber Congenital Amaurosis (LCA) is an inherited retinal disease that presents in infancy with severely decreased vision, nystagmus, and extinguished electroretinography findings. LCA8 is linked to variants in the Crumbs homolog 1 (CRB1) gene. CASE DESCRIPTION: We report a novel CRB1 variant in a 14-year-old male presenting with nystagmus, worsening vision, and inability to fixate on toys in his infancy. Color fundus photography revealed nummular pigments in the macula and periphery. Imaging studies revealed thickened retina on standard domain optical coherence tomography and widespread atrophy of the retinal pigment epithelium on autofluorescence. Full-field electroretinography revealed extinguished scotopic and significantly reduced photopic responses. Genetic testing demonstrated a novel homozygous variant, c.3057 T > A; p.(Tyr1019Ter), in the CRB1 gene. This variant is not currently amenable to base editing, however, in silico analysis revealed several potential prime editing strategies for correction. CONCLUSION: This case presentation is consistent with LCA8, suggesting pathogenicity of this novel variant and expanding our knowledge of disease-causing CRB1 variants.


Subject(s)
Leber Congenital Amaurosis , Male , Humans , Adolescent , Leber Congenital Amaurosis/diagnosis , Leber Congenital Amaurosis/genetics , Electroretinography , Gene Editing , Feasibility Studies , Mutation , Nerve Tissue Proteins/genetics , Eye Proteins/genetics , Phenotype , DNA Mutational Analysis , Membrane Proteins/genetics
12.
Mol Ther ; 30(4): 1407-1420, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35150888

ABSTRACT

Mutations in rhodopsin (RHO) are the most common causes of autosomal dominant retinitis pigmentosa (adRP), accounting for 20% to 30% of all cases worldwide. However, the high degree of genetic heterogeneity makes development of effective therapies cumbersome. To provide a universal solution to RHO-related adRP, we devised a CRISPR-based, mutation-independent gene ablation and replacement (AR) compound therapy carried by a dual AAV2/8 system. Moreover, we developed a novel hRHOC110R/hRHOWT humanized mouse model to assess the AR treatment in vivo. Results show that this humanized RHO mouse model exhibits progressive rod-cone degeneration that phenocopies hRHOC110R/hRHOWT patients. In vivo transduction of AR AAV8 dual vectors remarkably ablates endogenous RHO expression and overexpresses exogenous WT hRHO. Furthermore, the administration of AR during adulthood significantly hampers photoreceptor degeneration both histologically and functionally for at least 6 months compared with sole gene replacement or surgical trauma control. This study demonstrates the effectiveness of AR treatment of adRP in the human genomic context while revealing the feasibility of its application for other autosomal dominant disorders.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Disease Models, Animal , Genes, Dominant , Genetic Therapy/methods , Humans , Mice , Mutation , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/therapy , Rhodopsin/genetics , Rhodopsin/metabolism
13.
Cell Mol Life Sci ; 79(3): 148, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35195763

ABSTRACT

Patients with progressive neurodegenerative disorder retinitis pigmentosa (RP) are diagnosed in the midst of ongoing retinal degeneration and remodeling. Here, we used a Pde6b-deficient RP gene therapy mouse model to test whether treatment at late disease stages can halt photoreceptor degeneration and degradative remodeling, while sustaining constructive remodeling and restoring function. We demonstrated that when fewer than 13% of rods remain, our genetic rescue halts photoreceptor degeneration, electroretinography (ERG) functional decline and inner retinal remodeling. In addition, in a water maze test, the performance of mice treated at 16 weeks of age or earlier was indistinguishable from wild type. In contrast, no efficacy was apparent in mice treated at 24 weeks of age, suggesting the photoreceptors had reached a point of no return. Further, remodeling in the retinal pigment epithelium (RPE) and retinal vasculature was not halted at 16 or 24 weeks of age, although there appeared to be some slowing of blood vessel degradation. These data suggest a novel working model in which restoration of clinically significant visual function requires only modest threshold numbers of resilient photoreceptors, halting of destructive remodeling and sustained constructive remodeling. These novel findings define the potential and limitations of RP treatment and suggest possible nonphotoreceptor targets for gene therapy optimization.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Genetic Therapy/methods , Neurodegenerative Diseases/metabolism , Point Mutation , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Animals , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Disease Models, Animal , Electroretinography/methods , Mice , Mice, Transgenic , Morris Water Maze Test/drug effects , Neurodegenerative Diseases/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Vessels/metabolism , Retinitis Pigmentosa/metabolism , Tamoxifen/administration & dosage
14.
Adv Exp Med Biol ; 1415: 403-408, 2023.
Article in English | MEDLINE | ID: mdl-37440064

ABSTRACT

Retinal gene therapies have shown tremendous progress in the past decade, but the sheer number of disease-causing mutations makes their applicability challenging. In this study we test our hypothesis that retinitis pigmentosa-associated retinal degeneration can be prevented through AMP-activated protein kinase (AMPK)-associated metabolic pathway reprogramming using a gene-independent model of degeneration and rescue. We show that recue of photoreceptor structure and function is not achieved through our model of metabolic reprogramming. These results suggest that RP may not be treatable through AMPK pathway modulation-based therapies.


Subject(s)
Metformin , Retinitis Pigmentosa , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Retinal Rod Photoreceptor Cells/metabolism , Retina/metabolism
15.
Adv Exp Med Biol ; 1415: 103-107, 2023.
Article in English | MEDLINE | ID: mdl-37440021

ABSTRACT

The mouse and human retina contain three major Crumbs homologue-1 (CRB1) isoforms. CRB1-A and CRB1-B have cell-type-specific expression patterns making the choice of gene augmentation strategy unclear. Gene editing may be a viable alternative for the amelioration of CRB1-associated retinal degenerations. To assess the prevalence and spectrum of CRB1-associated pathogenic variants amenable to base and prime editing, we carried out an analysis of the Leiden Open Variation Database. Editable variants accounted for 54.5% for base editing and 99.8% for prime editing of all CRB1 pathogenic variants in the Leiden Open Variation Database. The 10 most common editable pathogenic variants for CRB1 accounted for 34.95% of all pathogenic variants, with the c.2843G>A, p.(Cys948Tyr) being the most common editable CRB1 variant. These findings outline the next step toward developing base and prime editing therapeutics as an alternative to gene augmentation for the amelioration of CRB1-associated retinal degenerations.


Subject(s)
Retinal Degeneration , Humans , Animals , Mice , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mutation , Retina/metabolism , Protein Isoforms/genetics , Eye Proteins/genetics , Eye Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
16.
Adv Exp Med Biol ; 1415: 571-576, 2023.
Article in English | MEDLINE | ID: mdl-37440088

ABSTRACT

Mutations in the Crumbs-homologue-1 (CRB1) gene lead to a spectrum of severe inherited retinal diseases, including retinitis pigmentosa (RP). The establishment of a genotype-phenotype correlation in CRB1 patients has been difficult due to the substantial variability and phenotypic overlap between CRB1-associated diseases. This phenotypic modulation may be due to several factors, including genetic modifiers, deep intronic mutations, isoform diversity, and copy number variations. Induced pluripotent stem cell (iPSC)-derived patient retinal organoids are novel tools that can provide sensitive, quantitative, and scalable phenotypic assays. CRB1 RP patient iPSC-derived retinal organoids have shown reproducible phenotypes compared to healthy retinal organoids. However, having genetically defined iPSC isogenic controls that take into account potential phenotypic modulation is crucial. In this study, we generated iPSC from an early-onset CRB1 patient and developed a correction strategy for the c.2480G>T, p.(Gly827Val) CRB1 mutation using CRISPR/Cas9-mediated homology-directed repair.


Subject(s)
Induced Pluripotent Stem Cells , Retinitis Pigmentosa , Humans , CRISPR-Cas Systems/genetics , DNA Copy Number Variations , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Mutation , Eye Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
17.
Adv Exp Med Biol ; 1415: 97-102, 2023.
Article in English | MEDLINE | ID: mdl-37440020

ABSTRACT

Mutations in peripherin 2 (PRPH2) are associated with a spectrum of inherited retinal diseases (IRDs) including retinitis pigmentosa (RP) and macular degeneration. As PRPH2 is localized to cone and rod outer segments, mutations in PRPH2 lead the disorganization or absence of photoreceptor outer segments. Here, we report on a patient with PRPH2-linked RP who exhibited widespread RPE atrophy with a central area of macular atrophy sparing the fovea. In future studies, we plan to model the pathobiology of PRPH2-based RP using induced pluripotent stem cell (iPSC)-derived retinal organoids. To effectively model rare mutations using iPSC-derived retinal organoids, we first require a strategy that can install the desired mutation in healthy wild-type iPSC, which can efficiently generate well-laminated retinal organoids. In this study, we developed an efficient prime editing strategy for the installation of the pathogenic PRPH2 c.828+1 G>A splice-site mutation underlying our patient's disease.


Subject(s)
Macular Degeneration , Retinal Degeneration , Retinitis Pigmentosa , Humans , Peripherins/genetics , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Mutation , Atrophy
18.
Adv Exp Med Biol ; 1415: 109-114, 2023.
Article in English | MEDLINE | ID: mdl-37440022

ABSTRACT

Prime editing (PE) is a novel, double-strand break (DSB)-independent gene editing technology that represents an exciting avenue for the treatment of inherited retinal diseases (IRDs). Given the extensive and heterogenous nature of the 280 genes associated with IRDs, genome editing has presented countless complications. However, recent advances in genome editing technologies have identified PE to have tremendous potential, with the capability to ameliorate small deletions and insertions in addition to all twelve possible transition and transversion mutations. The current PE system is based on the fusion of the Streptococcus pyogenes Cas9 (SpCas9) nickase H840A mutant and an optimized Moloney murine leukemia virus (MMLV) reverse-transcriptase (RT) in conjunction with a PE guide RNA (pegRNA). In this study, we developed a prime editor based on the avian myeloblastosis virus (AMV)-RT and showed its applicability for the installation of the PRPH2 c.828+1G>A mutation in HEK293 cells.


Subject(s)
Avian Myeloblastosis Virus , RNA-Directed DNA Polymerase , Humans , Animals , Mice , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Avian Myeloblastosis Virus/genetics , Avian Myeloblastosis Virus/metabolism , HEK293 Cells , Gene Editing , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/metabolism , CRISPR-Cas Systems
19.
Proc Natl Acad Sci U S A ; 117(37): 23033-23043, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873651

ABSTRACT

Numerous rhodopsin mutations have been implicated in night blindness and retinal degeneration, often with unclear etiology. D190N-rhodopsin (D190N-Rho) is a well-known inherited human mutation causing retinitis pigmentosa. Both higher-than-normal spontaneous-isomerization activity and misfolding/mistargeting of the mutant protein have been proposed as causes of the disease, but neither explanation has been thoroughly examined. We replaced wild-type rhodopsin (WT-Rho) in RhoD190N/WT mouse rods with a largely "functionally silenced" rhodopsin mutant to isolate electrical responses triggered by D190N-Rho activity, and found that D190N-Rho at the single-molecule level indeed isomerizes more frequently than WT-Rho by over an order of magnitude. Importantly, however, this higher molecular dark activity does not translate into an overall higher cellular dark noise, owing to diminished D190N-Rho content in the rod outer segment. Separately, we found that much of the degeneration and shortened outer-segment length of RhoD190N/WT mouse rods was not averted by ablating rod transducin in phototransduction-also consistent with D190N-Rho's higher isomerization activity not being the primary cause of disease. Instead, the low pigment content, shortened outer-segment length, and a moderate unfolded protein response implicate protein misfolding as the major pathogenic problem. Finally, D190N-Rho also provided some insight into the mechanism of spontaneous pigment excitation.


Subject(s)
Retinal Degeneration/metabolism , Rhodopsin/metabolism , Animals , Cell Line , Disease Models, Animal , HEK293 Cells , Humans , Light Signal Transduction/physiology , Mice , Mutation/physiology , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/metabolism , Rod Cell Outer Segment/metabolism
20.
Clin Exp Ophthalmol ; 51(3): 205-216, 2023 04.
Article in English | MEDLINE | ID: mdl-36594241

ABSTRACT

Hypoxia-inducible factor (HIF) plays a critical role in the mechanisms that allow cells to adapt to various oxygen levels in the environment. Specifically, HIF-1⍺ has shown to be widely involved in cellular repair, survival, and energy metabolism. HIF-1⍺ has also been found in increased levels in cancer cells, highlighting the importance of balance in the hypoxic response. Promoting HIF-1⍺ activity as a potential therapy for degenerative diseases and inhibiting HIF-1⍺ as a therapy for pathologies with overactive cell proliferation are actively being explored. Digoxin and metformin, HIF-1⍺ inhibitors, and deferoxamine and ⍺-ketoglutarate analogues, HIF-1⍺ activators, are being studied for application in age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, these same medications have retinal toxicities that must be assessed before implementation of therapeutic care. Herein, we highlight the duality of therapeutic and toxic potential of HIF-1⍺ that must be carefully assessed prior to its clinical application in retinal disorders.


Subject(s)
Diabetic Retinopathy , Retinal Diseases , Retinitis Pigmentosa , Humans , Retina/pathology , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Diabetic Retinopathy/metabolism , Hypoxia/pathology , Retinitis Pigmentosa/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL